Elliptic Genera and Vertex Operator Super-Algebras

Elliptic Genera and Vertex Operator Super-Algebras PDF Author: Hirotaka Tamanoi
Publisher: Springer
ISBN: 3540487883
Category : Mathematics
Languages : en
Pages : 397

Get Book Here

Book Description
This monograph deals with two aspects of the theory of elliptic genus: its topological aspect involving elliptic functions, and its representation theoretic aspect involving vertex operator super-algebras. For the second aspect, elliptic genera are shown to have the structure of modules over certain vertex operator super-algebras. The vertex operators corresponding to parallel tensor fields on closed Riemannian Spin Kähler manifolds such as Riemannian tensors and Kähler forms are shown to give rise to Virasoro algebras and affine Lie algebras. This monograph is chiefly intended for topologists and it includes accounts on topics outside of topology such as vertex operator algebras.

Elliptic Genera and Vertex Operator Super-Algebras

Elliptic Genera and Vertex Operator Super-Algebras PDF Author: Hirotaka Tamanoi
Publisher: Springer
ISBN: 3540487883
Category : Mathematics
Languages : en
Pages : 397

Get Book Here

Book Description
This monograph deals with two aspects of the theory of elliptic genus: its topological aspect involving elliptic functions, and its representation theoretic aspect involving vertex operator super-algebras. For the second aspect, elliptic genera are shown to have the structure of modules over certain vertex operator super-algebras. The vertex operators corresponding to parallel tensor fields on closed Riemannian Spin Kähler manifolds such as Riemannian tensors and Kähler forms are shown to give rise to Virasoro algebras and affine Lie algebras. This monograph is chiefly intended for topologists and it includes accounts on topics outside of topology such as vertex operator algebras.

The Schrödinger-Virasoro Algebra

The Schrödinger-Virasoro Algebra PDF Author: Jérémie Unterberger
Publisher: Springer Science & Business Media
ISBN: 3642227171
Category : Science
Languages : en
Pages : 334

Get Book Here

Book Description
This monograph provides the first up-to-date and self-contained presentation of a recently discovered mathematical structure—the Schrödinger-Virasoro algebra. Just as Poincaré invariance or conformal (Virasoro) invariance play a key rôle in understanding, respectively, elementary particles and two-dimensional equilibrium statistical physics, this algebra of non-relativistic conformal symmetries may be expected to apply itself naturally to the study of some models of non-equilibrium statistical physics, or more specifically in the context of recent developments related to the non-relativistic AdS/CFT correspondence. The study of the structure of this infinite-dimensional Lie algebra touches upon topics as various as statistical physics, vertex algebras, Poisson geometry, integrable systems and supergeometry as well as representation theory, the cohomology of infinite-dimensional Lie algebras, and the spectral theory of Schrödinger operators.

Generalized Cohomology

Generalized Cohomology PDF Author: Akira Kōno
Publisher: American Mathematical Soc.
ISBN: 9780821835142
Category : Mathematics
Languages : en
Pages : 276

Get Book Here

Book Description
Aims to give an exposition of generalized (co)homology theories that can be read by a group of mathematicians who are not experts in algebraic topology. This title starts with basic notions of homotopy theory, and introduces the axioms of generalized (co)homology theory. It also discusses various types of generalized cohomology theories.

Introduction to Vertex Operator Algebras and Their Representations

Introduction to Vertex Operator Algebras and Their Representations PDF Author: James Lepowsky
Publisher: Springer Science & Business Media
ISBN: 0817681868
Category : Mathematics
Languages : en
Pages : 330

Get Book Here

Book Description
* Introduces the fundamental theory of vertex operator algebras and its basic techniques and examples. * Begins with a detailed presentation of the theoretical foundations and proceeds to a range of applications. * Includes a number of new, original results and brings fresh perspective to important works of many other researchers in algebra, lie theory, representation theory, string theory, quantum field theory, and other areas of math and physics.

Moonshine beyond the Monster

Moonshine beyond the Monster PDF Author: Terry Gannon
Publisher: Cambridge University Press
ISBN: 1009401580
Category : Science
Languages : en
Pages : 493

Get Book Here

Book Description


Mathematical Reviews

Mathematical Reviews PDF Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 1884

Get Book Here

Book Description


Partition Functions and Automorphic Forms

Partition Functions and Automorphic Forms PDF Author: Valery A. Gritsenko
Publisher: Springer Nature
ISBN: 3030424006
Category : Mathematics
Languages : en
Pages : 422

Get Book Here

Book Description
This book offers an introduction to the research in several recently discovered and actively developing mathematical and mathematical physics areas. It focuses on: 1) Feynman integrals and modular functions, 2) hyperbolic and Lorentzian Kac-Moody algebras, related automorphic forms and applications to quantum gravity, 3) superconformal indices and elliptic hypergeometric integrals, related instanton partition functions, 4) moonshine, its arithmetic aspects, Jacobi forms, elliptic genus, and string theory, and 5) theory and applications of the elliptic Painleve equation, and aspects of Painleve equations in quantum field theories. All the topics covered are related to various partition functions emerging in different supersymmetric and ordinary quantum field theories in curved space-times of different (d=2,3,...,6) dimensions. Presenting multidisciplinary methods (localization, Borcherds products, theory of special functions, Cremona maps, etc) for treating a range of partition functions, the book is intended for graduate students and young postdocs interested in the interaction between quantum field theory and mathematics related to automorphic forms, representation theory, number theory and geometry, and mirror symmetry.

Progress in Algebraic Combinatorics

Progress in Algebraic Combinatorics PDF Author: Eiichi Bannai
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 478

Get Book Here

Book Description
This volume consists of thirteen papers on algebraic combinatorics and related areas written by leading experts around the world. There are four survey papers illustrating the following currently active branches of algebraic combinatorics: vertex operator algebras, spherical designs, Kerdock codes and related combinatorial objects, and geometry of matrices. The remaining nine papers are original research articles covering a wide range of disciplines, from classical topics such as permutation groups and finite geometry, to modern topics such as spin models and invariants of 3-manifolds. Two papers occupy nearly half the volume and present a comprehensive account of new concepts: ``Combinatorial Cell Complexes'' by M. Aschbacher and ``Quantum Matroids'' by P. Terwilliger. Terwilliger's theory of quantum matroids unites a part of the theory of finite geometries and a part of the theory of distance-regular graphs--great progess is expected in this field. K. Nomura's paper bridges the classical and the modern by establishing a connection between certain bipartite distance-regular graphs and spin models. All contributors to this volume were invited speakers at the conference ``Algebraic Combinatorics'' in Fukuoka, Japan (1993) and participated in the Research Institute in the Mathematical Sciences (RIMS) research project on algebraic combinatorics held at Kyoto University in 1994.

Loeb Measures in Practice: Recent Advances

Loeb Measures in Practice: Recent Advances PDF Author: Nigel J. Cutland
Publisher: Springer
ISBN: 3540445315
Category : Mathematics
Languages : en
Pages : 118

Get Book Here

Book Description
This expanded version of the 1997 European Mathematical Society Lectures given by the author in Helsinki, begins with a self-contained introduction to nonstandard analysis (NSA) and the construction of Loeb Measures, which are rich measures discovered in 1975 by Peter Loeb, using techniques from NSA. Subsequent chapters sketch a range of recent applications of Loeb measures due to the author and his collaborators, in such diverse fields as (stochastic) fluid mechanics, stochastic calculus of variations ("Malliavin" calculus) and the mathematical finance theory. The exposition is designed for a general audience, and no previous knowledge of either NSA or the various fields of applications is assumed.

Introduction to Symplectic Dirac Operators

Introduction to Symplectic Dirac Operators PDF Author: Katharina Habermann
Publisher: Springer
ISBN: 3540334211
Category : Mathematics
Languages : en
Pages : 131

Get Book Here

Book Description
This volume is the first one that gives a systematic and self-contained introduction to the theory of symplectic Dirac operators and reflects the current state of the subject. At the same time, it is intended to establish the idea that symplectic spin geometry and symplectic Dirac operators may give valuable tools in symplectic geometry and symplectic topology, which have become important fields and very active areas of mathematical research.