Elliptic Diophantine Equations

Elliptic Diophantine Equations PDF Author: Nikos Tzanakis
Publisher: Walter de Gruyter
ISBN: 3110281147
Category : Mathematics
Languages : en
Pages : 196

Get Book Here

Book Description
This book presents in a unified and concrete way the beautiful and deep mathematics - both theoretical and computational - on which the explicit solution of an elliptic Diophantine equation is based. It collects numerous results and methods that are scattered in the literature. Some results are hidden behind a number of routines in software packages, like Magma and Maple; professional mathematicians very often use these routines just as a black-box, having little idea about the mathematical treasure behind them. Almost 20 years have passed since the first publications on the explicit solution of elliptic Diophantine equations with the use of elliptic logarithms. The "art" of solving this type of equation has now reached its full maturity. The author is one of the main persons that contributed to the development of this art. The monograph presents a well-balanced combination of a variety of theoretical tools (from Diophantine geometry, algebraic number theory, theory of linear forms in logarithms of various forms - real/complex and p-adic elliptic - and classical complex analysis), clever computational methods and techniques (LLL algorithm and de Weger's reduction technique, AGM algorithm, Zagier's technique for computing elliptic integrals), ready-to-use computer packages. A result is the solution in practice of a large general class of Diophantine equations.

Elliptic Diophantine Equations

Elliptic Diophantine Equations PDF Author: Nikos Tzanakis
Publisher: Walter de Gruyter
ISBN: 3110281147
Category : Mathematics
Languages : en
Pages : 196

Get Book Here

Book Description
This book presents in a unified and concrete way the beautiful and deep mathematics - both theoretical and computational - on which the explicit solution of an elliptic Diophantine equation is based. It collects numerous results and methods that are scattered in the literature. Some results are hidden behind a number of routines in software packages, like Magma and Maple; professional mathematicians very often use these routines just as a black-box, having little idea about the mathematical treasure behind them. Almost 20 years have passed since the first publications on the explicit solution of elliptic Diophantine equations with the use of elliptic logarithms. The "art" of solving this type of equation has now reached its full maturity. The author is one of the main persons that contributed to the development of this art. The monograph presents a well-balanced combination of a variety of theoretical tools (from Diophantine geometry, algebraic number theory, theory of linear forms in logarithms of various forms - real/complex and p-adic elliptic - and classical complex analysis), clever computational methods and techniques (LLL algorithm and de Weger's reduction technique, AGM algorithm, Zagier's technique for computing elliptic integrals), ready-to-use computer packages. A result is the solution in practice of a large general class of Diophantine equations.

Elliptic Curves

Elliptic Curves PDF Author: S. Lang
Publisher: Springer Science & Business Media
ISBN: 3662070103
Category : Mathematics
Languages : en
Pages : 270

Get Book Here

Book Description
It is possible to write endlessly on elliptic curves. (This is not a threat.) We deal here with diophantine problems, and we lay the foundations, especially for the theory of integral points. We review briefly the analytic theory of the Weierstrass function, and then deal with the arithmetic aspects of the addition formula, over complete fields and over number fields, giving rise to the theory of the height and its quadraticity. We apply this to integral points, covering the inequalities of diophantine approximation both on the multiplicative group and on the elliptic curve directly. Thus the book splits naturally in two parts. The first part deals with the ordinary arithmetic of the elliptic curve: The transcendental parametrization, the p-adic parametrization, points of finite order and the group of rational points, and the reduction of certain diophantine problems by the theory of heights to diophantine inequalities involving logarithms. The second part deals with the proofs of selected inequalities, at least strong enough to obtain the finiteness of integral points.

Diophantus and Diophantine Equations

Diophantus and Diophantine Equations PDF Author: Isabella Grigoryevna Bashmakova
Publisher: American Mathematical Soc.
ISBN: 1470450496
Category : Mathematics
Languages : en
Pages : 90

Get Book Here

Book Description
This book tells the story of Diophantine analysis, a subject that, owing to its thematic proximity to algebraic geometry, became fashionable in the last half century and has remained so ever since. This new treatment of the methods of Diophantus--a person whose very existence has long been doubted by most historians of mathematics--will be accessible to readers who have taken some university mathematics. It includes the elementary facts of algebraic geometry indispensable for its understanding. The heart of the book is a fascinating account of the development of Diophantine methods during the.

Rational Points on Elliptic Curves

Rational Points on Elliptic Curves PDF Author: Joseph H. Silverman
Publisher: Springer Science & Business Media
ISBN: 1475742525
Category : Mathematics
Languages : en
Pages : 292

Get Book Here

Book Description
The theory of elliptic curves involves a blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, providing an opportunity for readers to appreciate the unity of modern mathematics. The book’s accessibility, the informal writing style, and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry.

The Algorithmic Resolution of Diophantine Equations

The Algorithmic Resolution of Diophantine Equations PDF Author: Nigel P. Smart
Publisher: Cambridge University Press
ISBN: 9780521646338
Category : Mathematics
Languages : en
Pages : 264

Get Book Here

Book Description
A coherent account of the computational methods used to solve diophantine equations.

Elliptic Tales

Elliptic Tales PDF Author: Avner Ash
Publisher: Princeton University Press
ISBN: 0691151199
Category : Mathematics
Languages : en
Pages : 277

Get Book Here

Book Description
Describes the latest developments in number theory by looking at the Birch and Swinnerton-Dyer Conjecture.

Arithmetic and Geometry

Arithmetic and Geometry PDF Author: Michael Artin
Publisher: Springer Science & Business Media
ISBN: 1475792840
Category : Mathematics
Languages : en
Pages : 366

Get Book Here

Book Description


Classical Diophantine Equations

Classical Diophantine Equations PDF Author: Vladimir G. Sprindzuk
Publisher: Springer
ISBN: 3540480838
Category : Mathematics
Languages : en
Pages : 244

Get Book Here

Book Description
The author had initiated a revision and translation of "Classical Diophantine Equations" prior to his death. Given the rapid advances in transcendence theory and diophantine approximation over recent years, one might fear that the present work, originally published in Russian in 1982, is mostly superseded. That is not so. A certain amount of updating had been prepared by the author himself before his untimely death. Some further revision was prepared by close colleagues. The first seven chapters provide a detailed, virtually exhaustive, discussion of the theory of lower bounds for linear forms in the logarithms of algebraic numbers and its applications to obtaining upper bounds for solutions to the eponymous classical diophantine equations. The detail may seem stark--- the author fears that the reader may react much as does the tourist on first seeing the centre Pompidou; notwithstanding that, Sprind zuk maintainsa pleasant and chatty approach, full of wise and interesting remarks. His emphases well warrant, now that the book appears in English, close studyand emulation. In particular those emphases allow him to devote the eighth chapter to an analysis of the interrelationship of the class number of algebraic number fields involved and the bounds on the heights of thesolutions of the diophantine equations. Those ideas warrant further development. The final chapter deals with effective aspects of the Hilbert Irreducibility Theorem, harkening back to earlier work of the author. There is no other congenial entry point to the ideas of the last two chapters in the literature.

An Introduction to Diophantine Equations

An Introduction to Diophantine Equations PDF Author: Titu Andreescu
Publisher: Springer Science & Business Media
ISBN: 0817645497
Category : Mathematics
Languages : en
Pages : 350

Get Book Here

Book Description
This problem-solving book is an introduction to the study of Diophantine equations, a class of equations in which only integer solutions are allowed. The presentation features some classical Diophantine equations, including linear, Pythagorean, and some higher degree equations, as well as exponential Diophantine equations. Many of the selected exercises and problems are original or are presented with original solutions. An Introduction to Diophantine Equations: A Problem-Based Approach is intended for undergraduates, advanced high school students and teachers, mathematical contest participants — including Olympiad and Putnam competitors — as well as readers interested in essential mathematics. The work uniquely presents unconventional and non-routine examples, ideas, and techniques.

Exponential Diophantine Equations

Exponential Diophantine Equations PDF Author: T. N. Shorey
Publisher: Cambridge University Press
ISBN: 9780521091701
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
This is a integrated presentation of the theory of exponential diophantine equations. The authors present, in a clear and unified fashion, applications to exponential diophantine equations and linear recurrence sequences of the Gelfond-Baker theory of linear forms in logarithms of algebraic numbers. Topics covered include the Thue equations, the generalised hyperelliptic equation, and the Fermat and Catalan equations. The necessary preliminaries are given in the first three chapters. Each chapter ends with a section giving details of related results.