Author: Filippo Gazzola
Publisher: Società Editrice Esculapio
ISBN: 8874888953
Category : Mathematics
Languages : en
Pages : 329
Book Description
Deep comprehension of applied sciences requires a solid knowledge of Mathematical Analysis. For most of high level scientific research, the good understanding of Functional Analysis and weak solutions to differential equations is essential. This book aims to deal with the main topics that are necessary to achieve such a knowledge. Still, this is the goal of many other texts in advanced analysis; and then, what would be a good reason to read or to consult this book? In order to answer this question, let us introduce the three Authors. Alberto Ferrero got his degree in Mathematics in 2000 and presently he is researcher in Mathematical Analysis at the Università del Piemonte Orientale. Filippo Gazzola got his degree in Mathematics in 1987 and he is now full professor in Mathematical Analysis at the Politecnico di Milano. Maurizio Zanotti got his degree in Mechanical Engineering in 2004 and presently he is structural and machine designer and lecturer professor in Mathematical Analysis at the Politecnico di Milano. The three Authors, for the variety of their skills, decided to join their expertises to write this book. One of the reasons that should encourage its reading is that the presentation turns out to be a reasonable compromise among the essential mathematical rigor, the importance of the applications and the clearness, which is necessary to make the reference work pleasant to the readers, even to the inexperienced ones. The range of treated topics is quite wide and covers the main basic notions of the scientific research which is based upon mathematical models. We start from vector spaces and Lebesgue integral to reach the frontier of theoretical research such as the study of critical exponents for semilinear elliptic equations and recent problems in fluid dynamics. This long route passes through the theory of Banach and Hilbert spaces, Sobolev spaces, differential equations, Fourier and Laplace transforms, before which we recall some appropriate tools of Complex Analysis. We give all the proofs that have some didactic or applicative interest, while we omit the ones which are too technical or require too high level knowledge. This book has the ambitious purpose to be useful to a broad variety of readers. The first possible beneficiaries are of course the second or third year students of a scientific course of degree: in what follows they will find the topics that are necessary to approach more advanced studies in Mathematics and in other fields, especially Physics and Engineering. This text could be also useful to graduate students who want to start a Ph.D. course: indeed it contains the matter of a multidisciplinary Ph.D. course given by Filippo Gazzola for several years at Politecnico di Milano. Finally, this book could be addressed also to the ones who have already left education far-back but occasionally need to use mathematical tools: we refer both to university professors and their research, and to professionals and designers who want to model a certain phenomenon, but also to the nostalgics of the good old days when they were students. It is precisely for this last type of reader that we have also reported some elementary topics, such as the properties of numerical sets and of the integrals; moreover, every chapter is provided with examples and specific exercises aimed at the involvement of the reader.
Elements of Advanced Mathematical Analysis for Physics and Engineering
Author: Filippo Gazzola
Publisher: Società Editrice Esculapio
ISBN: 8874888953
Category : Mathematics
Languages : en
Pages : 329
Book Description
Deep comprehension of applied sciences requires a solid knowledge of Mathematical Analysis. For most of high level scientific research, the good understanding of Functional Analysis and weak solutions to differential equations is essential. This book aims to deal with the main topics that are necessary to achieve such a knowledge. Still, this is the goal of many other texts in advanced analysis; and then, what would be a good reason to read or to consult this book? In order to answer this question, let us introduce the three Authors. Alberto Ferrero got his degree in Mathematics in 2000 and presently he is researcher in Mathematical Analysis at the Università del Piemonte Orientale. Filippo Gazzola got his degree in Mathematics in 1987 and he is now full professor in Mathematical Analysis at the Politecnico di Milano. Maurizio Zanotti got his degree in Mechanical Engineering in 2004 and presently he is structural and machine designer and lecturer professor in Mathematical Analysis at the Politecnico di Milano. The three Authors, for the variety of their skills, decided to join their expertises to write this book. One of the reasons that should encourage its reading is that the presentation turns out to be a reasonable compromise among the essential mathematical rigor, the importance of the applications and the clearness, which is necessary to make the reference work pleasant to the readers, even to the inexperienced ones. The range of treated topics is quite wide and covers the main basic notions of the scientific research which is based upon mathematical models. We start from vector spaces and Lebesgue integral to reach the frontier of theoretical research such as the study of critical exponents for semilinear elliptic equations and recent problems in fluid dynamics. This long route passes through the theory of Banach and Hilbert spaces, Sobolev spaces, differential equations, Fourier and Laplace transforms, before which we recall some appropriate tools of Complex Analysis. We give all the proofs that have some didactic or applicative interest, while we omit the ones which are too technical or require too high level knowledge. This book has the ambitious purpose to be useful to a broad variety of readers. The first possible beneficiaries are of course the second or third year students of a scientific course of degree: in what follows they will find the topics that are necessary to approach more advanced studies in Mathematics and in other fields, especially Physics and Engineering. This text could be also useful to graduate students who want to start a Ph.D. course: indeed it contains the matter of a multidisciplinary Ph.D. course given by Filippo Gazzola for several years at Politecnico di Milano. Finally, this book could be addressed also to the ones who have already left education far-back but occasionally need to use mathematical tools: we refer both to university professors and their research, and to professionals and designers who want to model a certain phenomenon, but also to the nostalgics of the good old days when they were students. It is precisely for this last type of reader that we have also reported some elementary topics, such as the properties of numerical sets and of the integrals; moreover, every chapter is provided with examples and specific exercises aimed at the involvement of the reader.
Publisher: Società Editrice Esculapio
ISBN: 8874888953
Category : Mathematics
Languages : en
Pages : 329
Book Description
Deep comprehension of applied sciences requires a solid knowledge of Mathematical Analysis. For most of high level scientific research, the good understanding of Functional Analysis and weak solutions to differential equations is essential. This book aims to deal with the main topics that are necessary to achieve such a knowledge. Still, this is the goal of many other texts in advanced analysis; and then, what would be a good reason to read or to consult this book? In order to answer this question, let us introduce the three Authors. Alberto Ferrero got his degree in Mathematics in 2000 and presently he is researcher in Mathematical Analysis at the Università del Piemonte Orientale. Filippo Gazzola got his degree in Mathematics in 1987 and he is now full professor in Mathematical Analysis at the Politecnico di Milano. Maurizio Zanotti got his degree in Mechanical Engineering in 2004 and presently he is structural and machine designer and lecturer professor in Mathematical Analysis at the Politecnico di Milano. The three Authors, for the variety of their skills, decided to join their expertises to write this book. One of the reasons that should encourage its reading is that the presentation turns out to be a reasonable compromise among the essential mathematical rigor, the importance of the applications and the clearness, which is necessary to make the reference work pleasant to the readers, even to the inexperienced ones. The range of treated topics is quite wide and covers the main basic notions of the scientific research which is based upon mathematical models. We start from vector spaces and Lebesgue integral to reach the frontier of theoretical research such as the study of critical exponents for semilinear elliptic equations and recent problems in fluid dynamics. This long route passes through the theory of Banach and Hilbert spaces, Sobolev spaces, differential equations, Fourier and Laplace transforms, before which we recall some appropriate tools of Complex Analysis. We give all the proofs that have some didactic or applicative interest, while we omit the ones which are too technical or require too high level knowledge. This book has the ambitious purpose to be useful to a broad variety of readers. The first possible beneficiaries are of course the second or third year students of a scientific course of degree: in what follows they will find the topics that are necessary to approach more advanced studies in Mathematics and in other fields, especially Physics and Engineering. This text could be also useful to graduate students who want to start a Ph.D. course: indeed it contains the matter of a multidisciplinary Ph.D. course given by Filippo Gazzola for several years at Politecnico di Milano. Finally, this book could be addressed also to the ones who have already left education far-back but occasionally need to use mathematical tools: we refer both to university professors and their research, and to professionals and designers who want to model a certain phenomenon, but also to the nostalgics of the good old days when they were students. It is precisely for this last type of reader that we have also reported some elementary topics, such as the properties of numerical sets and of the integrals; moreover, every chapter is provided with examples and specific exercises aimed at the involvement of the reader.
Mathematical Analysis in Engineering
Author: Chiang C. Mei
Publisher: Cambridge University Press
ISBN: 9780521587983
Category : Mathematics
Languages : en
Pages : 484
Book Description
A paperback edition of successful and well reviewed 1995 graduate text on applied mathematics for engineers.
Publisher: Cambridge University Press
ISBN: 9780521587983
Category : Mathematics
Languages : en
Pages : 484
Book Description
A paperback edition of successful and well reviewed 1995 graduate text on applied mathematics for engineers.
Mathematical Methods for Physics and Engineering
Author: Kenneth Franklin Riley
Publisher:
ISBN:
Category :
Languages : en
Pages : 1008
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 1008
Book Description
A Concise Approach to Mathematical Analysis
Author: Mangatiana A. Robdera
Publisher: Springer Science & Business Media
ISBN: 0857293478
Category : Mathematics
Languages : en
Pages : 370
Book Description
This text introduces to undergraduates the more abstract concepts of advanced calculus, smoothing the transition from standard calculus to the more rigorous approach of proof writing and a deeper understanding of mathematical analysis. The first part deals with the basic foundation of analysis on the real line; the second part studies more abstract notions in mathematical analysis. Each topic contains a brief introduction and detailed examples.
Publisher: Springer Science & Business Media
ISBN: 0857293478
Category : Mathematics
Languages : en
Pages : 370
Book Description
This text introduces to undergraduates the more abstract concepts of advanced calculus, smoothing the transition from standard calculus to the more rigorous approach of proof writing and a deeper understanding of mathematical analysis. The first part deals with the basic foundation of analysis on the real line; the second part studies more abstract notions in mathematical analysis. Each topic contains a brief introduction and detailed examples.
The Mathematical Structure of Classical and Relativistic Physics
Author: Enzo Tonti
Publisher: Springer Science & Business Media
ISBN: 1461474221
Category : Science
Languages : en
Pages : 537
Book Description
The theories describing seemingly unrelated areas of physics have surprising analogies that have aroused the curiosity of scientists and motivated efforts to identify reasons for their existence. Comparative study of physical theories has revealed the presence of a common topological and geometric structure. The Mathematical Structure of Classical and Relativistic Physics is the first book to analyze this structure in depth, thereby exposing the relationship between (a) global physical variables and (b) space and time elements such as points, lines, surfaces, instants, and intervals. Combining this relationship with the inner and outer orientation of space and time allows one to construct a classification diagram for variables, equations, and other theoretical characteristics. The book is divided into three parts. The first introduces the framework for the above-mentioned classification, methodically developing a geometric and topological formulation applicable to all physical laws and properties; the second applies this formulation to a detailed study of particle dynamics, electromagnetism, deformable solids, fluid dynamics, heat conduction, and gravitation. The third part further analyses the general structure of the classification diagram for variables and equations of physical theories. Suitable for a diverse audience of physicists, engineers, and mathematicians, The Mathematical Structure of Classical and Relativistic Physics offers a valuable resource for studying the physical world. Written at a level accessible to graduate and advanced undergraduate students in mathematical physics, the book can be used as a research monograph across various areas of physics, engineering and mathematics, and as a supplemental text for a broad range of upper-level scientific coursework.
Publisher: Springer Science & Business Media
ISBN: 1461474221
Category : Science
Languages : en
Pages : 537
Book Description
The theories describing seemingly unrelated areas of physics have surprising analogies that have aroused the curiosity of scientists and motivated efforts to identify reasons for their existence. Comparative study of physical theories has revealed the presence of a common topological and geometric structure. The Mathematical Structure of Classical and Relativistic Physics is the first book to analyze this structure in depth, thereby exposing the relationship between (a) global physical variables and (b) space and time elements such as points, lines, surfaces, instants, and intervals. Combining this relationship with the inner and outer orientation of space and time allows one to construct a classification diagram for variables, equations, and other theoretical characteristics. The book is divided into three parts. The first introduces the framework for the above-mentioned classification, methodically developing a geometric and topological formulation applicable to all physical laws and properties; the second applies this formulation to a detailed study of particle dynamics, electromagnetism, deformable solids, fluid dynamics, heat conduction, and gravitation. The third part further analyses the general structure of the classification diagram for variables and equations of physical theories. Suitable for a diverse audience of physicists, engineers, and mathematicians, The Mathematical Structure of Classical and Relativistic Physics offers a valuable resource for studying the physical world. Written at a level accessible to graduate and advanced undergraduate students in mathematical physics, the book can be used as a research monograph across various areas of physics, engineering and mathematics, and as a supplemental text for a broad range of upper-level scientific coursework.
Mathematical Methods for Science Students
Author: G. Stephenson
Publisher: Courier Dover Publications
ISBN: 0486842851
Category : Mathematics
Languages : en
Pages : 544
Book Description
Geared toward undergraduates in the physical sciences and related fields, this text offers a very useful review of mathematical methods that students will employ throughout their education and beyond. A few more difficult topics, such as group theory and integral equations, are introduced with the intention of stimulating interest in these areas. The treatment is supplemented with problems and answers.
Publisher: Courier Dover Publications
ISBN: 0486842851
Category : Mathematics
Languages : en
Pages : 544
Book Description
Geared toward undergraduates in the physical sciences and related fields, this text offers a very useful review of mathematical methods that students will employ throughout their education and beyond. A few more difficult topics, such as group theory and integral equations, are introduced with the intention of stimulating interest in these areas. The treatment is supplemented with problems and answers.
Mathematical Analysis II
Author: Vladimir A. Zorich
Publisher: Krishna Prakashan Media
ISBN:
Category : Mathematics
Languages : en
Pages : 792
Book Description
The second volume expounds classical analysis as it is today, as a part of unified mathematics, and its interactions with modern mathematical courses such as algebra, differential geometry, differential equations, complex and functional analysis. The book provides a firm foundation for advanced work in any of these directions.
Publisher: Krishna Prakashan Media
ISBN:
Category : Mathematics
Languages : en
Pages : 792
Book Description
The second volume expounds classical analysis as it is today, as a part of unified mathematics, and its interactions with modern mathematical courses such as algebra, differential geometry, differential equations, complex and functional analysis. The book provides a firm foundation for advanced work in any of these directions.
Advanced Engineering Mathematics
Author: Dennis G. Zill
Publisher: Jones & Bartlett Learning
ISBN: 9780763745912
Category : Mathematics
Languages : en
Pages : 1060
Book Description
Thoroughly Updated, Zill'S Advanced Engineering Mathematics, Third Edition Is A Compendium Of Many Mathematical Topics For Students Planning A Career In Engineering Or The Sciences. A Key Strength Of This Text Is Zill'S Emphasis On Differential Equations As Mathematical Models, Discussing The Constructs And Pitfalls Of Each. The Third Edition Is Comprehensive, Yet Flexible, To Meet The Unique Needs Of Various Course Offerings Ranging From Ordinary Differential Equations To Vector Calculus. Numerous New Projects Contributed By Esteemed Mathematicians Have Been Added. Key Features O The Entire Text Has Been Modernized To Prepare Engineers And Scientists With The Mathematical Skills Required To Meet Current Technological Challenges. O The New Larger Trim Size And 2-Color Design Make The Text A Pleasure To Read And Learn From. O Numerous NEW Engineering And Science Projects Contributed By Top Mathematicians Have Been Added, And Are Tied To Key Mathematical Topics In The Text. O Divided Into Five Major Parts, The Text'S Flexibility Allows Instructors To Customize The Text To Fit Their Needs. The First Eight Chapters Are Ideal For A Complete Short Course In Ordinary Differential Equations. O The Gram-Schmidt Orthogonalization Process Has Been Added In Chapter 7 And Is Used In Subsequent Chapters. O All Figures Now Have Explanatory Captions. Supplements O Complete Instructor'S Solutions: Includes All Solutions To The Exercises Found In The Text. Powerpoint Lecture Slides And Additional Instructor'S Resources Are Available Online. O Student Solutions To Accompany Advanced Engineering Mathematics, Third Edition: This Student Supplement Contains The Answers To Every Third Problem In The Textbook, Allowing Students To Assess Their Progress And Review Key Ideas And Concepts Discussed Throughout The Text. ISBN: 0-7637-4095-0
Publisher: Jones & Bartlett Learning
ISBN: 9780763745912
Category : Mathematics
Languages : en
Pages : 1060
Book Description
Thoroughly Updated, Zill'S Advanced Engineering Mathematics, Third Edition Is A Compendium Of Many Mathematical Topics For Students Planning A Career In Engineering Or The Sciences. A Key Strength Of This Text Is Zill'S Emphasis On Differential Equations As Mathematical Models, Discussing The Constructs And Pitfalls Of Each. The Third Edition Is Comprehensive, Yet Flexible, To Meet The Unique Needs Of Various Course Offerings Ranging From Ordinary Differential Equations To Vector Calculus. Numerous New Projects Contributed By Esteemed Mathematicians Have Been Added. Key Features O The Entire Text Has Been Modernized To Prepare Engineers And Scientists With The Mathematical Skills Required To Meet Current Technological Challenges. O The New Larger Trim Size And 2-Color Design Make The Text A Pleasure To Read And Learn From. O Numerous NEW Engineering And Science Projects Contributed By Top Mathematicians Have Been Added, And Are Tied To Key Mathematical Topics In The Text. O Divided Into Five Major Parts, The Text'S Flexibility Allows Instructors To Customize The Text To Fit Their Needs. The First Eight Chapters Are Ideal For A Complete Short Course In Ordinary Differential Equations. O The Gram-Schmidt Orthogonalization Process Has Been Added In Chapter 7 And Is Used In Subsequent Chapters. O All Figures Now Have Explanatory Captions. Supplements O Complete Instructor'S Solutions: Includes All Solutions To The Exercises Found In The Text. Powerpoint Lecture Slides And Additional Instructor'S Resources Are Available Online. O Student Solutions To Accompany Advanced Engineering Mathematics, Third Edition: This Student Supplement Contains The Answers To Every Third Problem In The Textbook, Allowing Students To Assess Their Progress And Review Key Ideas And Concepts Discussed Throughout The Text. ISBN: 0-7637-4095-0
Advanced Engineering Mathematics
Author: Michael Greenberg
Publisher:
ISBN: 9781292042541
Category : Engineering mathematics
Languages : en
Pages : 1344
Book Description
Appropriate for one- or two-semester Advanced Engineering Mathematics courses in departments of Mathematics and Engineering. This clear, pedagogically rich book develops a strong understanding of the mathematical principles and practices that today's engineers and scientists need to know. Equally effective as either a textbook or reference manual, it approaches mathematical concepts from a practical-use perspective making physical applications more vivid and substantial. Its comprehensive instructional framework supports a conversational, down-to-earth narrative style offering easy accessibility and frequent opportunities for application and reinforcement.
Publisher:
ISBN: 9781292042541
Category : Engineering mathematics
Languages : en
Pages : 1344
Book Description
Appropriate for one- or two-semester Advanced Engineering Mathematics courses in departments of Mathematics and Engineering. This clear, pedagogically rich book develops a strong understanding of the mathematical principles and practices that today's engineers and scientists need to know. Equally effective as either a textbook or reference manual, it approaches mathematical concepts from a practical-use perspective making physical applications more vivid and substantial. Its comprehensive instructional framework supports a conversational, down-to-earth narrative style offering easy accessibility and frequent opportunities for application and reinforcement.
Problems in Real Analysis
Author: Teodora-Liliana Radulescu
Publisher: Springer Science & Business Media
ISBN: 0387773797
Category : Mathematics
Languages : en
Pages : 462
Book Description
Problems in Real Analysis: Advanced Calculus on the Real Axis features a comprehensive collection of challenging problems in mathematical analysis that aim to promote creative, non-standard techniques for solving problems. This self-contained text offers a host of new mathematical tools and strategies which develop a connection between analysis and other mathematical disciplines, such as physics and engineering. A broad view of mathematics is presented throughout; the text is excellent for the classroom or self-study. It is intended for undergraduate and graduate students in mathematics, as well as for researchers engaged in the interplay between applied analysis, mathematical physics, and numerical analysis.
Publisher: Springer Science & Business Media
ISBN: 0387773797
Category : Mathematics
Languages : en
Pages : 462
Book Description
Problems in Real Analysis: Advanced Calculus on the Real Axis features a comprehensive collection of challenging problems in mathematical analysis that aim to promote creative, non-standard techniques for solving problems. This self-contained text offers a host of new mathematical tools and strategies which develop a connection between analysis and other mathematical disciplines, such as physics and engineering. A broad view of mathematics is presented throughout; the text is excellent for the classroom or self-study. It is intended for undergraduate and graduate students in mathematics, as well as for researchers engaged in the interplay between applied analysis, mathematical physics, and numerical analysis.