Author: Franco Cardin
Publisher: Springer
ISBN: 3319110268
Category : Science
Languages : en
Pages : 237
Book Description
This is a short tract on the essentials of differential and symplectic geometry together with a basic introduction to several applications of this rich framework: analytical mechanics, the calculus of variations, conjugate points & Morse index, and other physical topics. A central feature is the systematic utilization of Lagrangian submanifolds and their Maslov-Hörmander generating functions. Following this line of thought, first introduced by Wlodemierz Tulczyjew, geometric solutions of Hamilton-Jacobi equations, Hamiltonian vector fields and canonical transformations are described by suitable Lagrangian submanifolds belonging to distinct well-defined symplectic structures. This unified point of view has been particularly fruitful in symplectic topology, which is the modern Hamiltonian environment for the calculus of variations, yielding sharp sufficient existence conditions. This line of investigation was initiated by Claude Viterbo in 1992; here, some primary consequences of this theory are exposed in Chapter 8: aspects of Poincaré's last geometric theorem and the Arnol'd conjecture are introduced. In Chapter 7 elements of the global asymptotic treatment of the highly oscillating integrals for the Schrödinger equation are discussed: as is well known, this eventually leads to the theory of Fourier Integral Operators. This short handbook is directed toward graduate students in Mathematics and Physics and to all those who desire a quick introduction to these beautiful subjects.
Elementary Symplectic Topology and Mechanics
Author: Franco Cardin
Publisher: Springer
ISBN: 3319110268
Category : Science
Languages : en
Pages : 237
Book Description
This is a short tract on the essentials of differential and symplectic geometry together with a basic introduction to several applications of this rich framework: analytical mechanics, the calculus of variations, conjugate points & Morse index, and other physical topics. A central feature is the systematic utilization of Lagrangian submanifolds and their Maslov-Hörmander generating functions. Following this line of thought, first introduced by Wlodemierz Tulczyjew, geometric solutions of Hamilton-Jacobi equations, Hamiltonian vector fields and canonical transformations are described by suitable Lagrangian submanifolds belonging to distinct well-defined symplectic structures. This unified point of view has been particularly fruitful in symplectic topology, which is the modern Hamiltonian environment for the calculus of variations, yielding sharp sufficient existence conditions. This line of investigation was initiated by Claude Viterbo in 1992; here, some primary consequences of this theory are exposed in Chapter 8: aspects of Poincaré's last geometric theorem and the Arnol'd conjecture are introduced. In Chapter 7 elements of the global asymptotic treatment of the highly oscillating integrals for the Schrödinger equation are discussed: as is well known, this eventually leads to the theory of Fourier Integral Operators. This short handbook is directed toward graduate students in Mathematics and Physics and to all those who desire a quick introduction to these beautiful subjects.
Publisher: Springer
ISBN: 3319110268
Category : Science
Languages : en
Pages : 237
Book Description
This is a short tract on the essentials of differential and symplectic geometry together with a basic introduction to several applications of this rich framework: analytical mechanics, the calculus of variations, conjugate points & Morse index, and other physical topics. A central feature is the systematic utilization of Lagrangian submanifolds and their Maslov-Hörmander generating functions. Following this line of thought, first introduced by Wlodemierz Tulczyjew, geometric solutions of Hamilton-Jacobi equations, Hamiltonian vector fields and canonical transformations are described by suitable Lagrangian submanifolds belonging to distinct well-defined symplectic structures. This unified point of view has been particularly fruitful in symplectic topology, which is the modern Hamiltonian environment for the calculus of variations, yielding sharp sufficient existence conditions. This line of investigation was initiated by Claude Viterbo in 1992; here, some primary consequences of this theory are exposed in Chapter 8: aspects of Poincaré's last geometric theorem and the Arnol'd conjecture are introduced. In Chapter 7 elements of the global asymptotic treatment of the highly oscillating integrals for the Schrödinger equation are discussed: as is well known, this eventually leads to the theory of Fourier Integral Operators. This short handbook is directed toward graduate students in Mathematics and Physics and to all those who desire a quick introduction to these beautiful subjects.
Elementary Symplectic Topology and Mechanics
Author: Franco Cardin
Publisher:
ISBN: 9783319110271
Category :
Languages : en
Pages : 244
Book Description
Publisher:
ISBN: 9783319110271
Category :
Languages : en
Pages : 244
Book Description
Symplectic Geometry and Topology
Author: Yakov Eliashberg
Publisher: American Mathematical Soc.
ISBN: 9780821886892
Category : Mathematics
Languages : en
Pages : 452
Book Description
Symplectic geometry has its origins as a geometric language for classical mechanics. But it has recently exploded into an independent field interconnected with many other areas of mathematics and physics. The goal of the IAS/Park City Mathematics Institute Graduate Summer School on Symplectic Geometry and Topology was to give an intensive introduction to these exciting areas of current research. Included in this proceedings are lecture notes from the following courses: Introductionto Symplectic Topology by D. McDuff; Holomorphic Curves and Dynamics in Dimension Three by H. Hofer; An Introduction to the Seiberg-Witten Equations on Symplectic Manifolds by C. Taubes; Lectures on Floer Homology by D. Salamon; A Tutorial on Quantum Cohomology by A. Givental; Euler Characteristicsand Lagrangian Intersections by R. MacPherson; Hamiltonian Group Actions and Symplectic Reduction by L. Jeffrey; and Mechanics: Symmetry and Dynamics by J. Marsden. Information for our distributors: Titles in this series are copublished with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.
Publisher: American Mathematical Soc.
ISBN: 9780821886892
Category : Mathematics
Languages : en
Pages : 452
Book Description
Symplectic geometry has its origins as a geometric language for classical mechanics. But it has recently exploded into an independent field interconnected with many other areas of mathematics and physics. The goal of the IAS/Park City Mathematics Institute Graduate Summer School on Symplectic Geometry and Topology was to give an intensive introduction to these exciting areas of current research. Included in this proceedings are lecture notes from the following courses: Introductionto Symplectic Topology by D. McDuff; Holomorphic Curves and Dynamics in Dimension Three by H. Hofer; An Introduction to the Seiberg-Witten Equations on Symplectic Manifolds by C. Taubes; Lectures on Floer Homology by D. Salamon; A Tutorial on Quantum Cohomology by A. Givental; Euler Characteristicsand Lagrangian Intersections by R. MacPherson; Hamiltonian Group Actions and Symplectic Reduction by L. Jeffrey; and Mechanics: Symmetry and Dynamics by J. Marsden. Information for our distributors: Titles in this series are copublished with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.
Lectures on Symplectic Geometry
Author: Ana Cannas da Silva
Publisher: Springer
ISBN: 354045330X
Category : Mathematics
Languages : en
Pages : 240
Book Description
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
Publisher: Springer
ISBN: 354045330X
Category : Mathematics
Languages : en
Pages : 240
Book Description
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
Analytical Mechanics
Author: Sergio Cecotti
Publisher: Springer Nature
ISBN: 3031592646
Category :
Languages : en
Pages : 354
Book Description
Publisher: Springer Nature
ISBN: 3031592646
Category :
Languages : en
Pages : 354
Book Description
Symplectic Geometry
Author: Helmut Hofer
Publisher: Springer Nature
ISBN: 3031191110
Category : Mathematics
Languages : en
Pages : 1158
Book Description
Over the course of his distinguished career, Claude Viterbo has made a number of groundbreaking contributions in the development of symplectic geometry/topology and Hamiltonian dynamics. The chapters in this volume – compiled on the occasion of his 60th birthday – are written by distinguished mathematicians and pay tribute to his many significant and lasting achievements.
Publisher: Springer Nature
ISBN: 3031191110
Category : Mathematics
Languages : en
Pages : 1158
Book Description
Over the course of his distinguished career, Claude Viterbo has made a number of groundbreaking contributions in the development of symplectic geometry/topology and Hamiltonian dynamics. The chapters in this volume – compiled on the occasion of his 60th birthday – are written by distinguished mathematicians and pay tribute to his many significant and lasting achievements.
Symplectic Methods in Harmonic Analysis and in Mathematical Physics
Author: Maurice A. de Gosson
Publisher: Springer Science & Business Media
ISBN: 3764399929
Category : Mathematics
Languages : en
Pages : 351
Book Description
The aim of this book is to give a rigorous and complete treatment of various topics from harmonic analysis with a strong emphasis on symplectic invariance properties, which are often ignored or underestimated in the time-frequency literature. The topics that are addressed include (but are not limited to) the theory of the Wigner transform, the uncertainty principle (from the point of view of symplectic topology), Weyl calculus and its symplectic covariance, Shubin’s global theory of pseudo-differential operators, and Feichtinger’s theory of modulation spaces. Several applications to time-frequency analysis and quantum mechanics are given, many of them concurrent with ongoing research. For instance, a non-standard pseudo-differential calculus on phase space where the main role is played by “Bopp operators” (also called “Landau operators” in the literature) is introduced and studied. This calculus is closely related to both the Landau problem and to the deformation quantization theory of Flato and Sternheimer, of which it gives a simple pseudo-differential formulation where Feichtinger’s modulation spaces are key actors. This book is primarily directed towards students or researchers in harmonic analysis (in the broad sense) and towards mathematical physicists working in quantum mechanics. It can also be read with profit by researchers in time-frequency analysis, providing a valuable complement to the existing literature on the topic. A certain familiarity with Fourier analysis (in the broad sense) and introductory functional analysis (e.g. the elementary theory of distributions) is assumed. Otherwise, the book is largely self-contained and includes an extensive list of references.
Publisher: Springer Science & Business Media
ISBN: 3764399929
Category : Mathematics
Languages : en
Pages : 351
Book Description
The aim of this book is to give a rigorous and complete treatment of various topics from harmonic analysis with a strong emphasis on symplectic invariance properties, which are often ignored or underestimated in the time-frequency literature. The topics that are addressed include (but are not limited to) the theory of the Wigner transform, the uncertainty principle (from the point of view of symplectic topology), Weyl calculus and its symplectic covariance, Shubin’s global theory of pseudo-differential operators, and Feichtinger’s theory of modulation spaces. Several applications to time-frequency analysis and quantum mechanics are given, many of them concurrent with ongoing research. For instance, a non-standard pseudo-differential calculus on phase space where the main role is played by “Bopp operators” (also called “Landau operators” in the literature) is introduced and studied. This calculus is closely related to both the Landau problem and to the deformation quantization theory of Flato and Sternheimer, of which it gives a simple pseudo-differential formulation where Feichtinger’s modulation spaces are key actors. This book is primarily directed towards students or researchers in harmonic analysis (in the broad sense) and towards mathematical physicists working in quantum mechanics. It can also be read with profit by researchers in time-frequency analysis, providing a valuable complement to the existing literature on the topic. A certain familiarity with Fourier analysis (in the broad sense) and introductory functional analysis (e.g. the elementary theory of distributions) is assumed. Otherwise, the book is largely self-contained and includes an extensive list of references.
Mathematical Methods of Classical Mechanics
Author: V.I. Arnol'd
Publisher: Springer Science & Business Media
ISBN: 1475720637
Category : Mathematics
Languages : en
Pages : 530
Book Description
This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.
Publisher: Springer Science & Business Media
ISBN: 1475720637
Category : Mathematics
Languages : en
Pages : 530
Book Description
This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.
Analytical Mechanics
Author: Valter Moretti
Publisher: Springer Nature
ISBN: 3031276124
Category : Mathematics
Languages : en
Pages : 848
Book Description
This textbook aims at introducing readers, primarily students enrolled in undergraduate Mathematics or Physics courses, to the topics and methods of classical Mathematical Physics, including Classical Mechanics, its Lagrangian and Hamiltonian formulations, Lyapunov stability, plus the Liouville theorem and the Poincaré recurrence theorem among others. The material also rigorously covers the theory of Special Relativity. The logical-mathematical structure of the physical theories of concern is introduced in an axiomatic way, starting from a limited number of physical assumptions. Special attention is paid to themes with a major impact on Theoretical and Mathematical Physics beyond Analytical Mechanics, such as the Galilean symmetry of classical Dynamics and the Poincaré symmetry of relativistic Dynamics, the far-fetching relationship between symmetries and constants of motion, the coordinate-free nature of the underpinning mathematical objects, or the possibility of describing Dynamics in a global way while still working in local coordinates. Based on the author’s established teaching experience, the text was conceived to be flexible and thus adapt to different curricula and to the needs of a wide range of students and instructors.
Publisher: Springer Nature
ISBN: 3031276124
Category : Mathematics
Languages : en
Pages : 848
Book Description
This textbook aims at introducing readers, primarily students enrolled in undergraduate Mathematics or Physics courses, to the topics and methods of classical Mathematical Physics, including Classical Mechanics, its Lagrangian and Hamiltonian formulations, Lyapunov stability, plus the Liouville theorem and the Poincaré recurrence theorem among others. The material also rigorously covers the theory of Special Relativity. The logical-mathematical structure of the physical theories of concern is introduced in an axiomatic way, starting from a limited number of physical assumptions. Special attention is paid to themes with a major impact on Theoretical and Mathematical Physics beyond Analytical Mechanics, such as the Galilean symmetry of classical Dynamics and the Poincaré symmetry of relativistic Dynamics, the far-fetching relationship between symmetries and constants of motion, the coordinate-free nature of the underpinning mathematical objects, or the possibility of describing Dynamics in a global way while still working in local coordinates. Based on the author’s established teaching experience, the text was conceived to be flexible and thus adapt to different curricula and to the needs of a wide range of students and instructors.
Structure of Dynamical Systems
Author: J.M. Souriau
Publisher: Springer Science & Business Media
ISBN: 1461202817
Category : Mathematics
Languages : en
Pages : 427
Book Description
The aim of the book is to treat all three basic theories of physics, namely, classical mechanics, statistical mechanics, and quantum mechanics from the same perspective, that of symplectic geometry, thus showing the unifying power of the symplectic geometric approach. Reading this book will give the reader a deep understanding of the interrelationships between the three basic theories of physics. This book is addressed to graduate students and researchers in mathematics and physics who are interested in mathematical and theoretical physics, symplectic geometry, mechanics, and (geometric) quantization.
Publisher: Springer Science & Business Media
ISBN: 1461202817
Category : Mathematics
Languages : en
Pages : 427
Book Description
The aim of the book is to treat all three basic theories of physics, namely, classical mechanics, statistical mechanics, and quantum mechanics from the same perspective, that of symplectic geometry, thus showing the unifying power of the symplectic geometric approach. Reading this book will give the reader a deep understanding of the interrelationships between the three basic theories of physics. This book is addressed to graduate students and researchers in mathematics and physics who are interested in mathematical and theoretical physics, symplectic geometry, mechanics, and (geometric) quantization.