Author: Gerard Iooss
Publisher: Springer
ISBN: 9781461269779
Category : Mathematics
Languages : en
Pages : 324
Book Description
This substantially revised second edition teaches the bifurcation of asymptotic solutions to evolution problems governed by nonlinear differential equations. Written not just for mathematicians, it appeals to the widest audience of learners, including engineers, biologists, chemists, physicists and economists. For this reason, it uses only well-known methods of classical analysis at foundation level, while the applications and examples are specially chosen to be as varied as possible.
Elementary Stability and Bifurcation Theory
Author: Gerard Iooss
Publisher: Springer
ISBN: 9781461269779
Category : Mathematics
Languages : en
Pages : 324
Book Description
This substantially revised second edition teaches the bifurcation of asymptotic solutions to evolution problems governed by nonlinear differential equations. Written not just for mathematicians, it appeals to the widest audience of learners, including engineers, biologists, chemists, physicists and economists. For this reason, it uses only well-known methods of classical analysis at foundation level, while the applications and examples are specially chosen to be as varied as possible.
Publisher: Springer
ISBN: 9781461269779
Category : Mathematics
Languages : en
Pages : 324
Book Description
This substantially revised second edition teaches the bifurcation of asymptotic solutions to evolution problems governed by nonlinear differential equations. Written not just for mathematicians, it appeals to the widest audience of learners, including engineers, biologists, chemists, physicists and economists. For this reason, it uses only well-known methods of classical analysis at foundation level, while the applications and examples are specially chosen to be as varied as possible.
Elementary Stability and Bifurcation Theory
Author: G. Iooss
Publisher: Springer Science & Business Media
ISBN: 1468493361
Category : Science
Languages : en
Pages : 300
Book Description
In its most general form bifurcation theory is a theory of equilibrium solutions of nonlinear equations. By equilibrium solutions we mean, for example, steady solutions, time-periodic solutions, and quasi-periodic solutions. The purpose of this book is to teach the theory of bifurcation of equilibrium solutions of evolution problems governed by nonlinear differential equations. We have written this book for the broaqest audience of potentially interested learners: engineers, biologists, chemists, physicists, mathematicians, econom ists, and others whose work involves understanding equilibrium solutions of nonlinear differential equations. To accomplish our aims, we have thought it necessary to make the analysis 1. general enough to apply to the huge variety of applications which arise in science and technology, and 2. simple enough so that it can be understood by persons whose mathe matical training does not extend beyond the classical methods of analysis which were popular in the 19th Century. Of course, it is not possible to achieve generality and simplicity in a perfect union but, in fact, the general theory is simpler than the detailed theory required for particular applications. The general theory abstracts from the detailed problems only the essential features and provides the student with the skeleton on which detailed structures of the applications must rest. It is generally believed that the mathematical theory of bifurcation requires some functional analysis and some of the methods of topology and dynamics.
Publisher: Springer Science & Business Media
ISBN: 1468493361
Category : Science
Languages : en
Pages : 300
Book Description
In its most general form bifurcation theory is a theory of equilibrium solutions of nonlinear equations. By equilibrium solutions we mean, for example, steady solutions, time-periodic solutions, and quasi-periodic solutions. The purpose of this book is to teach the theory of bifurcation of equilibrium solutions of evolution problems governed by nonlinear differential equations. We have written this book for the broaqest audience of potentially interested learners: engineers, biologists, chemists, physicists, mathematicians, econom ists, and others whose work involves understanding equilibrium solutions of nonlinear differential equations. To accomplish our aims, we have thought it necessary to make the analysis 1. general enough to apply to the huge variety of applications which arise in science and technology, and 2. simple enough so that it can be understood by persons whose mathe matical training does not extend beyond the classical methods of analysis which were popular in the 19th Century. Of course, it is not possible to achieve generality and simplicity in a perfect union but, in fact, the general theory is simpler than the detailed theory required for particular applications. The general theory abstracts from the detailed problems only the essential features and provides the student with the skeleton on which detailed structures of the applications must rest. It is generally believed that the mathematical theory of bifurcation requires some functional analysis and some of the methods of topology and dynamics.
Elementary Stability and Bifurcation Theory
Author: Gerard Iooss
Publisher: Springer Science & Business Media
ISBN: 1461209978
Category : Mathematics
Languages : en
Pages : 347
Book Description
This substantially revised second edition teaches the bifurcation of asymptotic solutions to evolution problems governed by nonlinear differential equations. Written not just for mathematicians, it appeals to the widest audience of learners, including engineers, biologists, chemists, physicists and economists. For this reason, it uses only well-known methods of classical analysis at foundation level, while the applications and examples are specially chosen to be as varied as possible.
Publisher: Springer Science & Business Media
ISBN: 1461209978
Category : Mathematics
Languages : en
Pages : 347
Book Description
This substantially revised second edition teaches the bifurcation of asymptotic solutions to evolution problems governed by nonlinear differential equations. Written not just for mathematicians, it appeals to the widest audience of learners, including engineers, biologists, chemists, physicists and economists. For this reason, it uses only well-known methods of classical analysis at foundation level, while the applications and examples are specially chosen to be as varied as possible.
Elementary Stability and Bifurcation Theory
Author: Gerard Iooss
Publisher: Springer
ISBN: 0387970681
Category : Mathematics
Languages : en
Pages : 324
Book Description
This substantially revised second edition teaches the bifurcation of asymptotic solutions to evolution problems governed by nonlinear differential equations. Written not just for mathematicians, it appeals to the widest audience of learners, including engineers, biologists, chemists, physicists and economists. For this reason, it uses only well-known methods of classical analysis at foundation level, while the applications and examples are specially chosen to be as varied as possible.
Publisher: Springer
ISBN: 0387970681
Category : Mathematics
Languages : en
Pages : 324
Book Description
This substantially revised second edition teaches the bifurcation of asymptotic solutions to evolution problems governed by nonlinear differential equations. Written not just for mathematicians, it appeals to the widest audience of learners, including engineers, biologists, chemists, physicists and economists. For this reason, it uses only well-known methods of classical analysis at foundation level, while the applications and examples are specially chosen to be as varied as possible.
Elements of Applied Bifurcation Theory
Author: Yuri Kuznetsov
Publisher: Springer Science & Business Media
ISBN: 1475739788
Category : Mathematics
Languages : en
Pages : 648
Book Description
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.
Publisher: Springer Science & Business Media
ISBN: 1475739788
Category : Mathematics
Languages : en
Pages : 648
Book Description
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.
Stability, Bifurcation and Postcritical Behaviour of Elastic Structures
Author: M. Pignataro
Publisher: Elsevier
ISBN: 1483290832
Category : Technology & Engineering
Languages : en
Pages : 375
Book Description
A comprehensive and systematic analysis of elastic structural stability is presented in this volume. Traditional engineering buckling concepts are discussed in the framework of the Liapunov theory of stability by giving an extensive review of the Koiter approach. The perturbation method for both nonlinear algebraic and differential equations is discussed and adopted as the main tool for postbuckling analysis. The formulation of the buckling problem for the most common engineering structures - rods and frames, plates, shells, and thin-walled beams, is performed and the critical load evaluated for problems of interest. In many cases the postbuckling analysis up to the second order is presented. The use of the Ritz-Galerkin and of the finite element methods is examined as a tool for approximate bifurcation analysis. The volume will provide an up-to-date introduction for non-specialists in elastic stability theory and methods, and is intended for graduate and post-graduate students and researchers interested in nonlinear structural analysis problems. Basic prerequisites are kept to a minimum, a familiarity with elementary algebra and calculus is all that is required of readers to make use of this book.
Publisher: Elsevier
ISBN: 1483290832
Category : Technology & Engineering
Languages : en
Pages : 375
Book Description
A comprehensive and systematic analysis of elastic structural stability is presented in this volume. Traditional engineering buckling concepts are discussed in the framework of the Liapunov theory of stability by giving an extensive review of the Koiter approach. The perturbation method for both nonlinear algebraic and differential equations is discussed and adopted as the main tool for postbuckling analysis. The formulation of the buckling problem for the most common engineering structures - rods and frames, plates, shells, and thin-walled beams, is performed and the critical load evaluated for problems of interest. In many cases the postbuckling analysis up to the second order is presented. The use of the Ritz-Galerkin and of the finite element methods is examined as a tool for approximate bifurcation analysis. The volume will provide an up-to-date introduction for non-specialists in elastic stability theory and methods, and is intended for graduate and post-graduate students and researchers interested in nonlinear structural analysis problems. Basic prerequisites are kept to a minimum, a familiarity with elementary algebra and calculus is all that is required of readers to make use of this book.
Stability and Bifurcation of Structures
Author: Angelo Luongo
Publisher: Springer Nature
ISBN: 3031275721
Category : Technology & Engineering
Languages : en
Pages : 712
Book Description
This book overcomes the separation existing in literature between the static and the dynamic bifurcation worlds. It brings together buckling and post-buckling problems with nonlinear dynamics, the bridge being represented by the perturbation method, i.e., a mathematical tool that allows for solving static and dynamic problems virtually in the same way. The book is organized as follows: Chapter one gives an overview; Chapter two illustrates phenomenological aspect of static and dynamic bifurcations; Chapter three deals with linear stability analysis of dynamical systems; Chapter four and five discuss the general theory and present examples of buckling and post-buckling of elastic structures; Chapter six describes a linearized approach to buckling, usually adopted in the technical literature, in which pre-critical deformations are neglected; Chapters seven to ten, analyze elastic and elasto-plastic buckling of planar systems of beams, thin-walled beams and plate assemblies, respectively; Chapters eleven to thirteen, illustrate dynamic instability phenomena, such as flutter induced by follower forces, aeroelastic bifurcations caused by wind flow, and parametric excitation triggered by pulsating loads. Finally, Chapter fourteen discusses a large gallery of solved problems, concerning topics covered in the book. An Appendix presents the Vlasov theory of open thin-walled beams. The book is devoted to advanced undergraduate and graduate students, as well as engineers and practitioners. The methods illustrated here are immediately applicable to model real problems. The Book Introduces, in a simple way, complex concepts of bifurcation theory, by making use of elementary mathematics Gives a comprehensive overview of bifurcation of linear and nonlinear structures, in static and dynamic fields Contains a chapter in which many problems are solved, either analytically or numerically, and results commented
Publisher: Springer Nature
ISBN: 3031275721
Category : Technology & Engineering
Languages : en
Pages : 712
Book Description
This book overcomes the separation existing in literature between the static and the dynamic bifurcation worlds. It brings together buckling and post-buckling problems with nonlinear dynamics, the bridge being represented by the perturbation method, i.e., a mathematical tool that allows for solving static and dynamic problems virtually in the same way. The book is organized as follows: Chapter one gives an overview; Chapter two illustrates phenomenological aspect of static and dynamic bifurcations; Chapter three deals with linear stability analysis of dynamical systems; Chapter four and five discuss the general theory and present examples of buckling and post-buckling of elastic structures; Chapter six describes a linearized approach to buckling, usually adopted in the technical literature, in which pre-critical deformations are neglected; Chapters seven to ten, analyze elastic and elasto-plastic buckling of planar systems of beams, thin-walled beams and plate assemblies, respectively; Chapters eleven to thirteen, illustrate dynamic instability phenomena, such as flutter induced by follower forces, aeroelastic bifurcations caused by wind flow, and parametric excitation triggered by pulsating loads. Finally, Chapter fourteen discusses a large gallery of solved problems, concerning topics covered in the book. An Appendix presents the Vlasov theory of open thin-walled beams. The book is devoted to advanced undergraduate and graduate students, as well as engineers and practitioners. The methods illustrated here are immediately applicable to model real problems. The Book Introduces, in a simple way, complex concepts of bifurcation theory, by making use of elementary mathematics Gives a comprehensive overview of bifurcation of linear and nonlinear structures, in static and dynamic fields Contains a chapter in which many problems are solved, either analytically or numerically, and results commented
Dynamics of the Chemostat
Author: Abdelhamid Ajbar
Publisher: CRC Press
ISBN: 1439867143
Category : Mathematics
Languages : en
Pages : 370
Book Description
A ubiquitous tool in mathematical biology and chemical engineering, the chemostat often produces instabilities that pose safety hazards and adversely affect the optimization of bioreactive systems. Singularity theory and bifurcation diagrams together offer a useful framework for addressing these issues. Based on the authors’ extensive work in this field, Dynamics of the Chemostat: A Bifurcation Theory Approach explores the use of bifurcation theory to analyze the static and dynamic behavior of the chemostat. Introduction The authors first survey the major work that has been carried out on the stability of continuous bioreactors. They next present the modeling approaches used for bioreactive systems, the different kinetic expressions for growth rates, and tools, such as multiplicity, bifurcation, and singularity theory, for analyzing nonlinear systems. Application The text moves on to the static and dynamic behavior of the basic unstructured model of the chemostat for constant and variable yield coefficients as well as in the presence of wall attachment. It then covers the dynamics of interacting species, including pure and simple microbial competition, biodegradation of mixed substrates, dynamics of plasmid-bearing and plasmid-free recombinant cultures, and dynamics of predator–prey interactions. The authors also examine dynamics of the chemostat with product formation for various growth models, provide examples of bifurcation theory for studying the operability and dynamics of continuous bioreactor models, and apply elementary concepts of bifurcation theory to analyze the dynamics of a periodically forced bioreactor. Using singularity theory and bifurcation techniques, this book presents a cohesive mathematical framework for analyzing and modeling the macro- and microscopic interactions occurring in chemostats. The text includes models that describe the intracellular and operating elements of the bioreactive system. It also explains the mathematical theory behind the models.
Publisher: CRC Press
ISBN: 1439867143
Category : Mathematics
Languages : en
Pages : 370
Book Description
A ubiquitous tool in mathematical biology and chemical engineering, the chemostat often produces instabilities that pose safety hazards and adversely affect the optimization of bioreactive systems. Singularity theory and bifurcation diagrams together offer a useful framework for addressing these issues. Based on the authors’ extensive work in this field, Dynamics of the Chemostat: A Bifurcation Theory Approach explores the use of bifurcation theory to analyze the static and dynamic behavior of the chemostat. Introduction The authors first survey the major work that has been carried out on the stability of continuous bioreactors. They next present the modeling approaches used for bioreactive systems, the different kinetic expressions for growth rates, and tools, such as multiplicity, bifurcation, and singularity theory, for analyzing nonlinear systems. Application The text moves on to the static and dynamic behavior of the basic unstructured model of the chemostat for constant and variable yield coefficients as well as in the presence of wall attachment. It then covers the dynamics of interacting species, including pure and simple microbial competition, biodegradation of mixed substrates, dynamics of plasmid-bearing and plasmid-free recombinant cultures, and dynamics of predator–prey interactions. The authors also examine dynamics of the chemostat with product formation for various growth models, provide examples of bifurcation theory for studying the operability and dynamics of continuous bioreactor models, and apply elementary concepts of bifurcation theory to analyze the dynamics of a periodically forced bioreactor. Using singularity theory and bifurcation techniques, this book presents a cohesive mathematical framework for analyzing and modeling the macro- and microscopic interactions occurring in chemostats. The text includes models that describe the intracellular and operating elements of the bioreactive system. It also explains the mathematical theory behind the models.
Stability, Instability and Chaos
Author: Paul Glendinning
Publisher: Cambridge University Press
ISBN: 9780521425667
Category : Mathematics
Languages : en
Pages : 408
Book Description
An introduction to nonlinear differential equations which equips undergraduate students with the know-how to appreciate stability theory and bifurcation.
Publisher: Cambridge University Press
ISBN: 9780521425667
Category : Mathematics
Languages : en
Pages : 408
Book Description
An introduction to nonlinear differential equations which equips undergraduate students with the know-how to appreciate stability theory and bifurcation.
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
Author: John Guckenheimer
Publisher: Springer Science & Business Media
ISBN: 1461211409
Category : Mathematics
Languages : en
Pages : 475
Book Description
An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.
Publisher: Springer Science & Business Media
ISBN: 1461211409
Category : Mathematics
Languages : en
Pages : 475
Book Description
An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.