Elementary Geometry in Hyperbolic Space

Elementary Geometry in Hyperbolic Space PDF Author: Werner Fenchel
Publisher: Walter de Gruyter
ISBN: 9783110117349
Category : Mathematics
Languages : en
Pages : 248

Get Book Here

Book Description
Hyperbolic geometry is in a period of revised interest. This book contains a substantial account of the parts of the theory basic to the study of Kleinian groups, but it also contains the more broad-reaching thoughts of the author, one of the pioneers in the theory of convex bodies and a major contributor in other fields of mathematics. Annotation copyrighted by Book News, Inc., Portland, OR

Elementary Geometry in Hyperbolic Space

Elementary Geometry in Hyperbolic Space PDF Author: Werner Fenchel
Publisher: Walter de Gruyter
ISBN: 9783110117349
Category : Mathematics
Languages : en
Pages : 248

Get Book Here

Book Description
Hyperbolic geometry is in a period of revised interest. This book contains a substantial account of the parts of the theory basic to the study of Kleinian groups, but it also contains the more broad-reaching thoughts of the author, one of the pioneers in the theory of convex bodies and a major contributor in other fields of mathematics. Annotation copyrighted by Book News, Inc., Portland, OR

Elementary Geometry in Hyperbolic Space

Elementary Geometry in Hyperbolic Space PDF Author: Werner Fenchel
Publisher: Walter de Gruyter
ISBN: 3110849453
Category : Mathematics
Languages : en
Pages : 241

Get Book Here

Book Description
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.

Elementary Geometry

Elementary Geometry PDF Author: Ilka Agricola
Publisher: American Mathematical Soc.
ISBN: 0821843478
Category : Mathematics
Languages : en
Pages : 257

Get Book Here

Book Description
Plane geometry is developed from its basic objects and their properties and then moves to conics and basic solids, including the Platonic solids and a proof of Euler's polytope formula. Particular care is taken to explain symmetry groups, including the description of ornaments and the classification of isometries.

Lectures on Hyperbolic Geometry

Lectures on Hyperbolic Geometry PDF Author: Riccardo Benedetti
Publisher: Springer Science & Business Media
ISBN: 3642581587
Category : Mathematics
Languages : en
Pages : 343

Get Book Here

Book Description
Focussing on the geometry of hyperbolic manifolds, the aim here is to provide an exposition of some fundamental results, while being as self-contained, complete, detailed and unified as possible. Following some classical material on the hyperbolic space and the Teichmüller space, the book centers on the two fundamental results: Mostow's rigidity theorem (including a complete proof, following Gromov and Thurston) and Margulis' lemma. These then form the basis for studying Chabauty and geometric topology; a unified exposition is given of Wang's theorem and the Jorgensen-Thurston theory; and much space is devoted to the 3D case: a complete and elementary proof of the hyperbolic surgery theorem, based on the representation of three manifolds as glued ideal tetrahedra.

Hyperbolic Geometry

Hyperbolic Geometry PDF Author: James W. Anderson
Publisher: Springer Science & Business Media
ISBN: 1447139879
Category : Mathematics
Languages : en
Pages : 239

Get Book Here

Book Description
Thoroughly updated, featuring new material on important topics such as hyperbolic geometry in higher dimensions and generalizations of hyperbolicity Includes full solutions for all exercises Successful first edition sold over 800 copies in North America

A Gyrovector Space Approach to Hyperbolic Geometry

A Gyrovector Space Approach to Hyperbolic Geometry PDF Author: Abraham Ungar
Publisher: Morgan & Claypool Publishers
ISBN: 1598298232
Category : Technology & Engineering
Languages : en
Pages : 194

Get Book Here

Book Description
The mere mention of hyperbolic geometry is enough to strike fear in the heart of the undergraduate mathematics and physics student. Some regard themselves as excluded from the profound insights of hyperbolic geometry so that this enormous portion of human achievement is a closed door to them. The mission of this book is to open that door by making the hyperbolic geometry of Bolyai and Lobachevsky, as well as the special relativity theory of Einstein that it regulates, accessible to a wider audience in terms of novel analogies that the modern and unknown share with the classical and familiar. These novel analogies that this book captures stem from Thomas gyration, which is the mathematical abstraction of the relativistic effect known as Thomas precession. Remarkably, the mere introduction of Thomas gyration turns Euclidean geometry into hyperbolic geometry, and reveals mystique analogies that the two geometries share. Accordingly, Thomas gyration gives rise to the prefix "gyro" that is extensively used in the gyrolanguage of this book, giving rise to terms like gyrocommutative and gyroassociative binary operations in gyrogroups, and gyrovectors in gyrovector spaces. Of particular importance is the introduction of gyrovectors into hyperbolic geometry, where they are equivalence classes that add according to the gyroparallelogram law in full analogy with vectors, which are equivalence classes that add according to the parallelogram law. A gyroparallelogram, in turn, is a gyroquadrilateral the two gyrodiagonals of which intersect at their gyromidpoints in full analogy with a parallelogram, which is a quadrilateral the two diagonals of which intersect at their midpoints. Table of Contents: Gyrogroups / Gyrocommutative Gyrogroups / Gyrovector Spaces / Gyrotrigonometry

Low-Dimensional Geometry

Low-Dimensional Geometry PDF Author: Francis Bonahon
Publisher: American Mathematical Soc.
ISBN: 082184816X
Category : Mathematics
Languages : en
Pages : 403

Get Book Here

Book Description
The study of 3-dimensional spaces brings together elements from several areas of mathematics. The most notable are topology and geometry, but elements of number theory and analysis also make appearances. In the past 30 years, there have been striking developments in the mathematics of 3-dimensional manifolds. This book aims to introduce undergraduate students to some of these important developments. Low-Dimensional Geometry starts at a relatively elementary level, and its early chapters can be used as a brief introduction to hyperbolic geometry. However, the ultimate goal is to describe the very recently completed geometrization program for 3-dimensional manifolds. The journey to reach this goal emphasizes examples and concrete constructions as an introduction to more general statements. This includes the tessellations associated to the process of gluing together the sides of a polygon. Bending some of these tessellations provides a natural introduction to 3-dimensional hyperbolic geometry and to the theory of kleinian groups, and it eventually leads to a discussion of the geometrization theorems for knot complements and 3-dimensional manifolds. This book is illustrated with many pictures, as the author intended to share his own enthusiasm for the beauty of some of the mathematical objects involved. However, it also emphasizes mathematical rigor and, with the exception of the most recent research breakthroughs, its constructions and statements are carefully justified.

Foundations of Hyperbolic Manifolds

Foundations of Hyperbolic Manifolds PDF Author: John Ratcliffe
Publisher: Springer Science & Business Media
ISBN: 1475740131
Category : Mathematics
Languages : en
Pages : 761

Get Book Here

Book Description
This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. Particular emphasis has been placed on readability and completeness of ar gument. The treatment of the material is for the most part elementary and self-contained. The reader is assumed to have a basic knowledge of algebra and topology at the first-year graduate level of an American university. The book is divided into three parts. The first part, consisting of Chap ters 1-7, is concerned with hyperbolic geometry and basic properties of discrete groups of isometries of hyperbolic space. The main results are the existence theorem for discrete reflection groups, the Bieberbach theorems, and Selberg's lemma. The second part, consisting of Chapters 8-12, is de voted to the theory of hyperbolic manifolds. The main results are Mostow's rigidity theorem and the determination of the structure of geometrically finite hyperbolic manifolds. The third part, consisting of Chapter 13, in tegrates the first two parts in a development of the theory of hyperbolic orbifolds. The main results are the construction of the universal orbifold covering space and Poincare's fundamental polyhedron theorem.

Flavors of Geometry

Flavors of Geometry PDF Author: Silvio Levy
Publisher: Cambridge University Press
ISBN: 9780521629621
Category : Mathematics
Languages : en
Pages : 212

Get Book Here

Book Description
Flavors of Geometry is a volume of lectures on four geometrically-influenced fields of mathematics that have experienced great development in recent years. Growing out of a series of introductory lectures given at the Mathematical Sciences Research Institute in January 1995 and January 1996, the book presents chapters by masters in their respective fields on hyperbolic geometry, dynamics in several complex variables, convex geometry, and volume estimation. Each lecture begins with a discussion of elementary concepts, examines the highlights of the field, and concludes with a look at more advanced material. The style and presentation of the chapters are clear and accessible, and most of the lectures are richly illustrated. Bibiliographies and indexes are included to encourage further reading on the topics discussed.

Geometry II

Geometry II PDF Author: E.B. Vinberg
Publisher: Springer Science & Business Media
ISBN: 3662029014
Category : Mathematics
Languages : en
Pages : 263

Get Book Here

Book Description
A very clear account of the subject from the viewpoints of elementary geometry, Riemannian geometry and group theory – a book with no rival in the literature. Mostly accessible to first-year students in mathematics, the book also includes very recent results which will be of interest to researchers in this field.