Elementary Finite Element Method

Elementary Finite Element Method PDF Author: Chandrakant S. Desai
Publisher: Prentice Hall
ISBN:
Category : Mathematics
Languages : en
Pages : 454

Get Book Here

Book Description

Elementary Finite Element Method

Elementary Finite Element Method PDF Author: Chandrakant S. Desai
Publisher: Prentice Hall
ISBN:
Category : Mathematics
Languages : en
Pages : 454

Get Book Here

Book Description


Finite Element Method

Finite Element Method PDF Author: Gouri Dhatt
Publisher: John Wiley & Sons
ISBN: 1118569709
Category : Mathematics
Languages : en
Pages : 495

Get Book Here

Book Description
This book offers an in-depth presentation of the finite element method, aimed at engineers, students and researchers in applied sciences. The description of the method is presented in such a way as to be usable in any domain of application. The level of mathematical expertise required is limited to differential and matrix calculus. The various stages necessary for the implementation of the method are clearly identified, with a chapter given over to each one: approximation, construction of the integral forms, matrix organization, solution of the algebraic systems and architecture of programs. The final chapter lays the foundations for a general program, written in Matlab, which can be used to solve problems that are linear or otherwise, stationary or transient, presented in relation to applications stemming from the domains of structural mechanics, fluid mechanics and heat transfer.

TEXTBOOK OF FINITE ELEMENT ANALYSIS

TEXTBOOK OF FINITE ELEMENT ANALYSIS PDF Author: P. SESHU
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120323157
Category : Mathematics
Languages : en
Pages : 340

Get Book Here

Book Description
Designed for a one-semester course in Finite Element Method, this compact and well-organized text presents FEM as a tool to find approximate solutions to differential equations. This provides the student a better perspective on the technique and its wide range of applications. This approach reflects the current trend as the present-day applications range from structures to biomechanics to electromagnetics, unlike in conventional texts that view FEM primarily as an extension of matrix methods of structural analysis. After an introduction and a review of mathematical preliminaries, the book gives a detailed discussion on FEM as a technique for solving differential equations and variational formulation of FEM. This is followed by a lucid presentation of one-dimensional and two-dimensional finite elements and finite element formulation for dynamics. The book concludes with some case studies that focus on industrial problems and Appendices that include mini-project topics based on near-real-life problems. Postgraduate/Senior undergraduate students of civil, mechanical and aeronautical engineering will find this text extremely useful; it will also appeal to the practising engineers and the teaching community.

The Finite Element Method: Solid mechanics

The Finite Element Method: Solid mechanics PDF Author: O. C. Zienkiewicz
Publisher: Butterworth-Heinemann
ISBN: 9780750650557
Category : Continuum mechanics
Languages : en
Pages : 482

Get Book Here

Book Description


A Finite Element Primer for Beginners

A Finite Element Primer for Beginners PDF Author: Tarek I. Zohdi
Publisher: Springer
ISBN: 3319090364
Category : Science
Languages : en
Pages : 113

Get Book Here

Book Description
The purpose of this primer is to provide the basics of the Finite Element Method, primarily illustrated through a classical model problem, linearized elasticity. The topics covered are: (1) Weighted residual methods and Galerkin approximations, (2) A model problem for one-dimensional linear elastostatics, (3) Weak formulations in one dimension, (4) Minimum principles in one dimension, (5) Error estimation in one dimension, (5) Construction of Finite Element basis functions in one dimension, (6) Gaussian Quadrature, (7) Iterative solvers and element by element data structures, (8) A model problem for three-dimensional linear elastostatics, (9) Weak formulations in three dimensions, (10) Basic rules for element construction in three-dimensions, (11) Assembly of the system and solution schemes, (12) Assembly of the system and solution schemes, (13) An introduction to time-dependent problems and (14) A brief introduction to rapid computation based on domain decomposition and basic parallel processing.

The Finite Element Method for Boundary Value Problems

The Finite Element Method for Boundary Value Problems PDF Author: Karan S. Surana
Publisher: CRC Press
ISBN: 1498780512
Category : Science
Languages : en
Pages : 820

Get Book Here

Book Description
Written by two well-respected experts in the field, The Finite Element Method for Boundary Value Problems: Mathematics and Computations bridges the gap between applied mathematics and application-oriented computational studies using FEM. Mathematically rigorous, the FEM is presented as a method of approximation for differential operators that are mathematically classified as self-adjoint, non-self-adjoint, and non-linear, thus addressing totality of all BVPs in various areas of engineering, applied mathematics, and physical sciences. These classes of operators are utilized in various methods of approximation: Galerkin method, Petrov-Galerkin Method, weighted residual method, Galerkin method with weak form, least squares method based on residual functional, etc. to establish unconditionally stable finite element computational processes using calculus of variations. Readers are able to grasp the mathematical foundation of finite element method as well as its versatility of applications. h-, p-, and k-versions of finite element method, hierarchical approximations, convergence, error estimation, error computation, and adaptivity are additional significant aspects of this book.

Finite Element Methods and Their Applications

Finite Element Methods and Their Applications PDF Author: Zhangxin Chen
Publisher: Springer Science & Business Media
ISBN: 3540240780
Category : Science
Languages : en
Pages : 415

Get Book Here

Book Description
Introduce every concept in the simplest setting and to maintain a level of treatment that is as rigorous as possible without being unnecessarily abstract. Contains unique recent developments of various finite elements such as nonconforming, mixed, discontinuous, characteristic, and adaptive finite elements, along with their applications. Describes unique recent applications of finite element methods to important fields such as multiphase flows in porous media and semiconductor modelling. Treats the three major types of partial differential equations, i.e., elliptic, parabolic, and hyperbolic equations.

A First Course in Finite Elements

A First Course in Finite Elements PDF Author: Jacob Fish
Publisher: Wiley-Blackwell
ISBN: 9780470035801
Category : Computers
Languages : en
Pages : 319

Get Book Here

Book Description
Developed from the authors, combined total of 50 years undergraduate and graduate teaching experience, this book presents the finite element method formulated as a general-purpose numerical procedure for solving engineering problems governed by partial differential equations. Focusing on the formulation and application of the finite element method through the integration of finite element theory, code development, and software application, the book is both introductory and self-contained, as well as being a hands-on experience for any student. This authoritative text on Finite Elements: Adopts a generic approach to the subject, and is not application specific In conjunction with a web-based chapter, it integrates code development, theory, and application in one book Provides an accompanying Web site that includes ABAQUS Student Edition, Matlab data and programs, and instructor resources Contains a comprehensive set of homework problems at the end of each chapter Produces a practical, meaningful course for both lecturers, planning a finite element module, and for students using the text in private study. Accompanied by a book companion website housing supplementary material that can be found at http://www.wileyeurope.com/college/Fish A First Course in Finite Elements is the ideal practical introductory course for junior and senior undergraduate students from a variety of science and engineering disciplines. The accompanying advanced topics at the end of each chapter also make it suitable for courses at graduate level, as well as for practitioners who need to attain or refresh their knowledge of finite elements through private study.

The Scaled Boundary Finite Element Method

The Scaled Boundary Finite Element Method PDF Author: John P. Wolf
Publisher: John Wiley & Sons
ISBN: 9780471486824
Category : Technology & Engineering
Languages : en
Pages : 398

Get Book Here

Book Description
A novel computational procedure called the scaled boundary finite-element method is described which combines the advantages of the finite-element and boundary-element methods : Of the finite-element method that no fundamental solution is required and thus expanding the scope of application, for instance to anisotropic material without an increase in complexity and that singular integrals are avoided and that symmetry of the results is automatically satisfied. Of the boundary-element method that the spatial dimension is reduced by one as only the boundary is discretized with surface finite elements, reducing the data preparation and computational efforts, that the boundary conditions at infinity are satisfied exactly and that no approximation other than that of the surface finite elements on the boundary is introduced. In addition, the scaled boundary finite-element method presents appealing features of its own : an analytical solution inside the domain is achieved, permitting for instance accurate stress intensity factors to be determined directly and no spatial discretization of certain free and fixed boundaries and interfaces between different materials is required. In addition, the scaled boundary finite-element method combines the advantages of the analytical and numerical approaches. In the directions parallel to the boundary, where the behaviour is, in general, smooth, the weighted-residual approximation of finite elements applies, leading to convergence in the finite-element sense. In the third (radial) direction, the procedure is analytical, permitting e.g. stress-intensity factors to be determined directly based on their definition or the boundary conditions at infinity to be satisfied exactly. In a nutshell, the scaled boundary finite-element method is a semi-analytical fundamental-solution-less boundary-element method based on finite elements. The best of both worlds is achieved in two ways: with respect to the analytical and numerical methods and with respect to the finite-element and boundary-element methods within the numerical procedures. The book serves two goals: Part I is an elementary text, without any prerequisites, a primer, but which using a simple model problem still covers all aspects of the method and Part II presents a detailed derivation of the general case of statics, elastodynamics and diffusion.

Partial Differential Equations and the Finite Element Method

Partial Differential Equations and the Finite Element Method PDF Author: Pavel Ŝolín
Publisher: John Wiley & Sons
ISBN: 0471764094
Category : Mathematics
Languages : en
Pages : 505

Get Book Here

Book Description
A systematic introduction to partial differential equations and modern finite element methods for their efficient numerical solution Partial Differential Equations and the Finite Element Method provides a much-needed, clear, and systematic introduction to modern theory of partial differential equations (PDEs) and finite element methods (FEM). Both nodal and hierachic concepts of the FEM are examined. Reflecting the growing complexity and multiscale nature of current engineering and scientific problems, the author emphasizes higher-order finite element methods such as the spectral or hp-FEM. A solid introduction to the theory of PDEs and FEM contained in Chapters 1-4 serves as the core and foundation of the publication. Chapter 5 is devoted to modern higher-order methods for the numerical solution of ordinary differential equations (ODEs) that arise in the semidiscretization of time-dependent PDEs by the Method of Lines (MOL). Chapter 6 discusses fourth-order PDEs rooted in the bending of elastic beams and plates and approximates their solution by means of higher-order Hermite and Argyris elements. Finally, Chapter 7 introduces the reader to various PDEs governing computational electromagnetics and describes their finite element approximation, including modern higher-order edge elements for Maxwell's equations. The understanding of many theoretical and practical aspects of both PDEs and FEM requires a solid knowledge of linear algebra and elementary functional analysis, such as functions and linear operators in the Lebesgue, Hilbert, and Sobolev spaces. These topics are discussed with the help of many illustrative examples in Appendix A, which is provided as a service for those readers who need to gain the necessary background or require a refresher tutorial. Appendix B presents several finite element computations rooted in practical engineering problems and demonstrates the benefits of using higher-order FEM. Numerous finite element algorithms are written out in detail alongside implementation discussions. Exercises, including many that involve programming the FEM, are designed to assist the reader in solving typical problems in engineering and science. Specifically designed as a coursebook, this student-tested publication is geared to upper-level undergraduates and graduate students in all disciplines of computational engineeringand science. It is also a practical problem-solving reference for researchers, engineers, and physicists.