Author: Lehmer Derrick Norman
Publisher:
ISBN: 9780259623984
Category :
Languages : en
Pages :
Book Description
Elementary Course in Synthetic Projective Geometry
Author: Lehmer Derrick Norman
Publisher:
ISBN: 9780259623984
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9780259623984
Category :
Languages : en
Pages :
Book Description
An Elementary Course in Synthetic Projective Geometry
Author: Derrick Norman Lehmer
Publisher:
ISBN:
Category : Geometry, Projective
Languages : en
Pages : 152
Book Description
Publisher:
ISBN:
Category : Geometry, Projective
Languages : en
Pages : 152
Book Description
An Elementary Course in Synthetic Projective Geometry
Author: Derrick Norman Lehmer
Publisher:
ISBN:
Category : Geometry, Projective
Languages : en
Pages : 146
Book Description
Publisher:
ISBN:
Category : Geometry, Projective
Languages : en
Pages : 146
Book Description
An Elementary Course in Synthetic Projective Geometry
Author: Derrick Norman Lehmer
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
An Elementary Course in Synthetic Projective Geometry
Author: Derrick Norman Lehmer
Publisher: Forgotten Books
ISBN: 9781330376997
Category : Mathematics
Languages : en
Pages : 141
Book Description
Excerpt from An Elementary Course in Synthetic Projective Geometry The following course is intended to give, in as simple a way as possible, the essentials of synthetic projective geometry. While, in the main, the theory is developed along the well-beaten track laid out by the great masters of the subject, it is believed that there has been a slight smoothing of the road in some places. Especially will this be observed in the chapter on Involution. The author has never felt satisfied with the usual treatment of that subject by means of circles and anharmonie ratios. A purely projective notion ought not to be based on metrical foundations. Metrical developments should be made there, as elsewhere in the theory, by the introduction of infinitely distant elements. The author has departed from the century-old custom of writing in parallel columns each theorem and its dual. He has not found that it conduces to sharpness of vision to try to focus his eyes 011 two things at once. Those who prefer the usual method of procedure can, of course, develop the two sets of theorems side by side; the author has not found this the better plan in actual teaching. As regards nomenclature, the author has followed the lead of the earlier writers in English, and has called the system of lines in a plane which all pass through a point a pencil of rays instead of a bundle of rays, as later writers seem inclined to do. About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.
Publisher: Forgotten Books
ISBN: 9781330376997
Category : Mathematics
Languages : en
Pages : 141
Book Description
Excerpt from An Elementary Course in Synthetic Projective Geometry The following course is intended to give, in as simple a way as possible, the essentials of synthetic projective geometry. While, in the main, the theory is developed along the well-beaten track laid out by the great masters of the subject, it is believed that there has been a slight smoothing of the road in some places. Especially will this be observed in the chapter on Involution. The author has never felt satisfied with the usual treatment of that subject by means of circles and anharmonie ratios. A purely projective notion ought not to be based on metrical foundations. Metrical developments should be made there, as elsewhere in the theory, by the introduction of infinitely distant elements. The author has departed from the century-old custom of writing in parallel columns each theorem and its dual. He has not found that it conduces to sharpness of vision to try to focus his eyes 011 two things at once. Those who prefer the usual method of procedure can, of course, develop the two sets of theorems side by side; the author has not found this the better plan in actual teaching. As regards nomenclature, the author has followed the lead of the earlier writers in English, and has called the system of lines in a plane which all pass through a point a pencil of rays instead of a bundle of rays, as later writers seem inclined to do. About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.
An Elementary Course in Synthetic Projective Geometry, by Derrick Norman Lehmer
Author: Derrick Norman Lehmer
Publisher:
ISBN: 9781418163921
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9781418163921
Category :
Languages : en
Pages :
Book Description
Introduction to Projective Geometry
Author: C. R. Wylie
Publisher: Courier Corporation
ISBN: 0486141705
Category : Mathematics
Languages : en
Pages : 578
Book Description
This lucid introductory text offers both an analytic and an axiomatic approach to plane projective geometry. The analytic treatment builds and expands upon students' familiarity with elementary plane analytic geometry and provides a well-motivated approach to projective geometry. Subsequent chapters explore Euclidean and non-Euclidean geometry as specializations of the projective plane, revealing the existence of an infinite number of geometries, each Euclidean in nature but characterized by a different set of distance- and angle-measurement formulas. Outstanding pedagogical features include worked-through examples, introductions and summaries for each topic, and numerous theorems, proofs, and exercises that reinforce each chapter's precepts. Two helpful indexes conclude the text, along with answers to all odd-numbered exercises. In addition to its value to undergraduate students of mathematics, computer science, and secondary mathematics education, this volume provides an excellent reference for computer science professionals.
Publisher: Courier Corporation
ISBN: 0486141705
Category : Mathematics
Languages : en
Pages : 578
Book Description
This lucid introductory text offers both an analytic and an axiomatic approach to plane projective geometry. The analytic treatment builds and expands upon students' familiarity with elementary plane analytic geometry and provides a well-motivated approach to projective geometry. Subsequent chapters explore Euclidean and non-Euclidean geometry as specializations of the projective plane, revealing the existence of an infinite number of geometries, each Euclidean in nature but characterized by a different set of distance- and angle-measurement formulas. Outstanding pedagogical features include worked-through examples, introductions and summaries for each topic, and numerous theorems, proofs, and exercises that reinforce each chapter's precepts. Two helpful indexes conclude the text, along with answers to all odd-numbered exercises. In addition to its value to undergraduate students of mathematics, computer science, and secondary mathematics education, this volume provides an excellent reference for computer science professionals.
Projective Geometry
Author: Albrecht Beutelspacher
Publisher: Cambridge University Press
ISBN: 9780521483643
Category : Mathematics
Languages : en
Pages : 272
Book Description
Projective geometry is not only a jewel of mathematics, but has also many applications in modern information and communication science. This book presents the foundations of classical projective and affine geometry as well as its important applications in coding theory and cryptography. It also could serve as a first acquaintance with diagram geometry. Written in clear and contemporary language with an entertaining style and around 200 exercises, examples and hints, this book is ideally suited to be used as a textbook for study in the classroom or on its own.
Publisher: Cambridge University Press
ISBN: 9780521483643
Category : Mathematics
Languages : en
Pages : 272
Book Description
Projective geometry is not only a jewel of mathematics, but has also many applications in modern information and communication science. This book presents the foundations of classical projective and affine geometry as well as its important applications in coding theory and cryptography. It also could serve as a first acquaintance with diagram geometry. Written in clear and contemporary language with an entertaining style and around 200 exercises, examples and hints, this book is ideally suited to be used as a textbook for study in the classroom or on its own.
Geometry: A Comprehensive Course
Author: Dan Pedoe
Publisher: Courier Corporation
ISBN: 0486131734
Category : Mathematics
Languages : en
Pages : 466
Book Description
Introduction to vector algebra in the plane; circles and coaxial systems; mappings of the Euclidean plane; similitudes, isometries, Moebius transformations, much more. Includes over 500 exercises.
Publisher: Courier Corporation
ISBN: 0486131734
Category : Mathematics
Languages : en
Pages : 466
Book Description
Introduction to vector algebra in the plane; circles and coaxial systems; mappings of the Euclidean plane; similitudes, isometries, Moebius transformations, much more. Includes over 500 exercises.
Projective Geometry
Author: H.S.M. Coxeter
Publisher: Springer Science & Business Media
ISBN: 9780387406237
Category : Mathematics
Languages : en
Pages : 180
Book Description
In Euclidean geometry, constructions are made with ruler and compass. Projective geometry is simpler: its constructions require only a ruler. In projective geometry one never measures anything, instead, one relates one set of points to another by a projectivity. The first two chapters of this book introduce the important concepts of the subject and provide the logical foundations. The third and fourth chapters introduce the famous theorems of Desargues and Pappus. Chapters 5 and 6 make use of projectivities on a line and plane, respectively. The next three chapters develop a self-contained account of von Staudt's approach to the theory of conics. The modern approach used in that development is exploited in Chapter 10, which deals with the simplest finite geometry that is rich enough to illustrate all the theorems nontrivially. The concluding chapters show the connections among projective, Euclidean, and analytic geometry.
Publisher: Springer Science & Business Media
ISBN: 9780387406237
Category : Mathematics
Languages : en
Pages : 180
Book Description
In Euclidean geometry, constructions are made with ruler and compass. Projective geometry is simpler: its constructions require only a ruler. In projective geometry one never measures anything, instead, one relates one set of points to another by a projectivity. The first two chapters of this book introduce the important concepts of the subject and provide the logical foundations. The third and fourth chapters introduce the famous theorems of Desargues and Pappus. Chapters 5 and 6 make use of projectivities on a line and plane, respectively. The next three chapters develop a self-contained account of von Staudt's approach to the theory of conics. The modern approach used in that development is exploited in Chapter 10, which deals with the simplest finite geometry that is rich enough to illustrate all the theorems nontrivially. The concluding chapters show the connections among projective, Euclidean, and analytic geometry.