Author: Bryan H. Suits
Publisher: Springer Nature
ISBN: 3030390888
Category : Technology & Engineering
Languages : en
Pages : 332
Book Description
This book provides undergraduate physics majors and students of related sciences with a sound basic understanding of electronics and how it is used, principally in the physical sciences. While today few science students go on to careers that demand an ability to design and build electronic circuits, many will use and rely on electronics. As scientists, they will require an appropriate level of fundamental knowledge that enables them, for example, to understand what electronic equipment is doing, to correctly interpret the measurements obtained, and to appreciate the numerous links between electronics and how it is practiced, and other areas of science. Discussing electronics in the broader context and from the point of view of the scientist, this book is intended for students who are not planning to become electronics specialists. It has been written in a relatively informal, personal style and includes detailed examples, as well as some “outside the box” material to inspire thought and creativity. A selection of relevant exercises is included at the end of each chapter.
Electronics for Physicists
Author: Bryan H. Suits
Publisher: Springer Nature
ISBN: 3030390888
Category : Technology & Engineering
Languages : en
Pages : 332
Book Description
This book provides undergraduate physics majors and students of related sciences with a sound basic understanding of electronics and how it is used, principally in the physical sciences. While today few science students go on to careers that demand an ability to design and build electronic circuits, many will use and rely on electronics. As scientists, they will require an appropriate level of fundamental knowledge that enables them, for example, to understand what electronic equipment is doing, to correctly interpret the measurements obtained, and to appreciate the numerous links between electronics and how it is practiced, and other areas of science. Discussing electronics in the broader context and from the point of view of the scientist, this book is intended for students who are not planning to become electronics specialists. It has been written in a relatively informal, personal style and includes detailed examples, as well as some “outside the box” material to inspire thought and creativity. A selection of relevant exercises is included at the end of each chapter.
Publisher: Springer Nature
ISBN: 3030390888
Category : Technology & Engineering
Languages : en
Pages : 332
Book Description
This book provides undergraduate physics majors and students of related sciences with a sound basic understanding of electronics and how it is used, principally in the physical sciences. While today few science students go on to careers that demand an ability to design and build electronic circuits, many will use and rely on electronics. As scientists, they will require an appropriate level of fundamental knowledge that enables them, for example, to understand what electronic equipment is doing, to correctly interpret the measurements obtained, and to appreciate the numerous links between electronics and how it is practiced, and other areas of science. Discussing electronics in the broader context and from the point of view of the scientist, this book is intended for students who are not planning to become electronics specialists. It has been written in a relatively informal, personal style and includes detailed examples, as well as some “outside the box” material to inspire thought and creativity. A selection of relevant exercises is included at the end of each chapter.
Solid-State Physics for Electronics
Author: Andre Moliton
Publisher: John Wiley & Sons
ISBN: 111862324X
Category : Science
Languages : en
Pages : 293
Book Description
Describing the fundamental physical properties of materials used in electronics, the thorough coverage of this book will facilitate an understanding of the technological processes used in the fabrication of electronic and photonic devices. The book opens with an introduction to the basic applied physics of simple electronic states and energy levels. Silicon and copper, the building blocks for many electronic devices, are used as examples. Next, more advanced theories are developed to better account for the electronic and optical behavior of ordered materials, such as diamond, and disordered materials, such as amorphous silicon. Finally, the principal quasi-particles (phonons, polarons, excitons, plasmons, and polaritons) that are fundamental to explaining phenomena such as component aging (phonons) and optical performance in terms of yield (excitons) or communication speed (polarons) are discussed.
Publisher: John Wiley & Sons
ISBN: 111862324X
Category : Science
Languages : en
Pages : 293
Book Description
Describing the fundamental physical properties of materials used in electronics, the thorough coverage of this book will facilitate an understanding of the technological processes used in the fabrication of electronic and photonic devices. The book opens with an introduction to the basic applied physics of simple electronic states and energy levels. Silicon and copper, the building blocks for many electronic devices, are used as examples. Next, more advanced theories are developed to better account for the electronic and optical behavior of ordered materials, such as diamond, and disordered materials, such as amorphous silicon. Finally, the principal quasi-particles (phonons, polarons, excitons, plasmons, and polaritons) that are fundamental to explaining phenomena such as component aging (phonons) and optical performance in terms of yield (excitons) or communication speed (polarons) are discussed.
Principles of Transistor Circuits
Author: S W Amos
Publisher: Elsevier
ISBN: 1483293904
Category : Technology & Engineering
Languages : en
Pages : 401
Book Description
For over thirty years, Stan Amos has provided students and practitioners with a text they could rely on to keep them at the forefront of transistor circuit design. This seminal work has now been presented in a clear new format and completely updated to include the latest equipment such as laser diodes, Trapatt diodes, optocouplers and GaAs transistors, and the most recent line output stages and switch-mode power supplies.Although integrated circuits have widespread application, the role of discrete transistors is undiminished, both as important building blocks which students must understand and as practical solutions to design problems, especially where appreciable power output or high voltage is required. New circuit techniques covered for the first time in this edition include current-dumping amplifiers, bridge output stages, dielectric resonator oscillators, crowbar protection circuits, thyristor field timebases, low-noise blocks and SHF amplifiers in satellite receivers, video clamps, picture enhancement circuits, motor drive circuits in video recorders and camcorders, and UHF modulators. The plan of the book remains the same: semiconductor physics is introduced, followed by details of the design of transistors, amplifiers, receivers, oscillators and generators. Appendices provide information on transistor manufacture and parameters, and a new appendix on transistor letter symbols has been included.
Publisher: Elsevier
ISBN: 1483293904
Category : Technology & Engineering
Languages : en
Pages : 401
Book Description
For over thirty years, Stan Amos has provided students and practitioners with a text they could rely on to keep them at the forefront of transistor circuit design. This seminal work has now been presented in a clear new format and completely updated to include the latest equipment such as laser diodes, Trapatt diodes, optocouplers and GaAs transistors, and the most recent line output stages and switch-mode power supplies.Although integrated circuits have widespread application, the role of discrete transistors is undiminished, both as important building blocks which students must understand and as practical solutions to design problems, especially where appreciable power output or high voltage is required. New circuit techniques covered for the first time in this edition include current-dumping amplifiers, bridge output stages, dielectric resonator oscillators, crowbar protection circuits, thyristor field timebases, low-noise blocks and SHF amplifiers in satellite receivers, video clamps, picture enhancement circuits, motor drive circuits in video recorders and camcorders, and UHF modulators. The plan of the book remains the same: semiconductor physics is introduced, followed by details of the design of transistors, amplifiers, receivers, oscillators and generators. Appendices provide information on transistor manufacture and parameters, and a new appendix on transistor letter symbols has been included.
Advances in Electronics and Electron Physics
Author:
Publisher: Academic Press
ISBN: 0080577474
Category : Computers
Languages : en
Pages : 357
Book Description
Advances in Electronics and Electron Physics
Publisher: Academic Press
ISBN: 0080577474
Category : Computers
Languages : en
Pages : 357
Book Description
Advances in Electronics and Electron Physics
Mesoscopic Physics and Electronics
Author: Tsuneya Ando
Publisher: Springer Science & Business Media
ISBN: 3642719767
Category : Technology & Engineering
Languages : en
Pages : 293
Book Description
Semiconductor technology has developed considerably during the past several decades. The exponential growth in microelectronic processing power has been achieved by a constant scaling down of integrated cir,cuits. Smaller fea ture sizes result in increased functional density, faster speed, and lower costs. One key ingredient of the LSI technology is the development of the lithog raphy and microfabrication. The current minimum feature size is already as small as 0.2 /tm, beyond the limit imposed by the wavelength of visible light and rapidly approaching fundamental limits. The next generation of devices is highly likely to show unexpected properties due to quantum effects and fluctuations. The device which plays an important role in LSIs is MOSFETs (metal oxide-semiconductor field-effect transistors). In MOSFETs an inversion layer is formed at the interface of silicon and its insulating oxide. The inversion layer provides a unique two-dimensional (2D) system in which the electron concentration is controlled almost freely over a very wide range. Physics of such 2D systems was born in the mid-1960s together with the development of MOSFETs. The integer quantum Hall effect was first discovered in this system.
Publisher: Springer Science & Business Media
ISBN: 3642719767
Category : Technology & Engineering
Languages : en
Pages : 293
Book Description
Semiconductor technology has developed considerably during the past several decades. The exponential growth in microelectronic processing power has been achieved by a constant scaling down of integrated cir,cuits. Smaller fea ture sizes result in increased functional density, faster speed, and lower costs. One key ingredient of the LSI technology is the development of the lithog raphy and microfabrication. The current minimum feature size is already as small as 0.2 /tm, beyond the limit imposed by the wavelength of visible light and rapidly approaching fundamental limits. The next generation of devices is highly likely to show unexpected properties due to quantum effects and fluctuations. The device which plays an important role in LSIs is MOSFETs (metal oxide-semiconductor field-effect transistors). In MOSFETs an inversion layer is formed at the interface of silicon and its insulating oxide. The inversion layer provides a unique two-dimensional (2D) system in which the electron concentration is controlled almost freely over a very wide range. Physics of such 2D systems was born in the mid-1960s together with the development of MOSFETs. The integer quantum Hall effect was first discovered in this system.
Introduction to the Physics of Electronics
Author: Myron F. Uman
Publisher: Prentice Hall
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 440
Book Description
Publisher: Prentice Hall
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 440
Book Description
Physics for Electronics Engineering
Author: G. SHANMUGAM
Publisher:
ISBN: 9781700753724
Category :
Languages : en
Pages : 207
Book Description
As per the New syllabus & Regulations 2017 prescribed by the Anna University, Chennai, this book "PHYSICS FOR ELECTRONICS ENGINEERING (PH8253)" has been written by Dr. G. SHANMUGAM, Former Assistant Professor, Department of Physics, Vel Tech, Chennai-600 062 for the second semester B.E/B. Tech degree course in Electrical and Electronics Engineering (EEE), Electronics and Communication Engineering (ECE), Electronics and Instrumentation Engineering (E&I), Instrumentation and Control Engineering (ICE), Bio Medical Engineering (BME), Medical Electronics (ME), and Computer and Communication Engineering (CC). This book deals with the various physical properties of materials that areof practical utility. It mainly focuses on the changes in physical properties of materials arising from the distribution of electrons in metals, semiconductors and insulators and also covers topics on the properties of magnetic and dielectric materials, optical properties of micro-electronic devices and nanoelectronic devices.
Publisher:
ISBN: 9781700753724
Category :
Languages : en
Pages : 207
Book Description
As per the New syllabus & Regulations 2017 prescribed by the Anna University, Chennai, this book "PHYSICS FOR ELECTRONICS ENGINEERING (PH8253)" has been written by Dr. G. SHANMUGAM, Former Assistant Professor, Department of Physics, Vel Tech, Chennai-600 062 for the second semester B.E/B. Tech degree course in Electrical and Electronics Engineering (EEE), Electronics and Communication Engineering (ECE), Electronics and Instrumentation Engineering (E&I), Instrumentation and Control Engineering (ICE), Bio Medical Engineering (BME), Medical Electronics (ME), and Computer and Communication Engineering (CC). This book deals with the various physical properties of materials that areof practical utility. It mainly focuses on the changes in physical properties of materials arising from the distribution of electrons in metals, semiconductors and insulators and also covers topics on the properties of magnetic and dielectric materials, optical properties of micro-electronic devices and nanoelectronic devices.
Low Temperature Electronics
Author: Edmundo A. Gutierrez-D
Publisher: Elsevier
ISBN: 0080510507
Category : Technology & Engineering
Languages : en
Pages : 986
Book Description
Low Temperature Electronics: Physics, Devices, Circuits, and Applications summarizes the recent advances in cryoelectronics starting from the fundamentals in physics and semiconductor devices to electronic systems, hybrid superconductor-semiconductor technologies, photonic devices, cryocoolers and thermal management. Furthermore, this book provides an exploration of the currently available theory, research, and technologies related to cryoelectronics, including treatment of the solid state physical properties of the materials used in these systems. Current applications are found in infrared systems, satellite communications and medical equipment. There are opportunities to expand in newer fields such as wireless and mobile communications, computers, and measurement and scientific equipment. Low temperature operations can offer certain advantages such as higher operational speeds, lower power dissipation, shorter signal transmission times, higher semiconductor and metal thermal conductivities, and improved digital and analog circuit performance.The computer, telecommunication, and cellular phone market is pushing the semiconductor industry towards the development of very aggressive device and integrated circuit fabrication technologies. This is taking these technologies towards the physical miniaturization limit, where quantum effects and fabrication costs are becoming a technological and economical barrier for further development. In view of these limitations, operation of semiconductor devices and circuits at low temperature (cryogenic temperature) is studied in this book.* It is a book intended for a wide audience: students, scientists, technology development engineers, private companies, universities, etc.* It contains information which is for the first time available as an all-in-one source; Interdisciplinary material is arranged and made compatible in this book* It is a must as reference source
Publisher: Elsevier
ISBN: 0080510507
Category : Technology & Engineering
Languages : en
Pages : 986
Book Description
Low Temperature Electronics: Physics, Devices, Circuits, and Applications summarizes the recent advances in cryoelectronics starting from the fundamentals in physics and semiconductor devices to electronic systems, hybrid superconductor-semiconductor technologies, photonic devices, cryocoolers and thermal management. Furthermore, this book provides an exploration of the currently available theory, research, and technologies related to cryoelectronics, including treatment of the solid state physical properties of the materials used in these systems. Current applications are found in infrared systems, satellite communications and medical equipment. There are opportunities to expand in newer fields such as wireless and mobile communications, computers, and measurement and scientific equipment. Low temperature operations can offer certain advantages such as higher operational speeds, lower power dissipation, shorter signal transmission times, higher semiconductor and metal thermal conductivities, and improved digital and analog circuit performance.The computer, telecommunication, and cellular phone market is pushing the semiconductor industry towards the development of very aggressive device and integrated circuit fabrication technologies. This is taking these technologies towards the physical miniaturization limit, where quantum effects and fabrication costs are becoming a technological and economical barrier for further development. In view of these limitations, operation of semiconductor devices and circuits at low temperature (cryogenic temperature) is studied in this book.* It is a book intended for a wide audience: students, scientists, technology development engineers, private companies, universities, etc.* It contains information which is for the first time available as an all-in-one source; Interdisciplinary material is arranged and made compatible in this book* It is a must as reference source
Solid State Physics and Electronics
Author: RK Puri | VK Babbar
Publisher: S. Chand Publishing
ISBN: 8121914752
Category : Science
Languages : en
Pages : 614
Book Description
The present edition is brought up to incorporate the useful suggestions from a number of readers and teachers for the benefit of students.A topic on common-collector configuration is added to the chapter XIII.A new chapter on logic gates is intriduced at the end.Keeping in view the present style of university Question papers,a number of very short,short and long thoroughly revised and corrected to remove the errors which crept into earlier editions.
Publisher: S. Chand Publishing
ISBN: 8121914752
Category : Science
Languages : en
Pages : 614
Book Description
The present edition is brought up to incorporate the useful suggestions from a number of readers and teachers for the benefit of students.A topic on common-collector configuration is added to the chapter XIII.A new chapter on logic gates is intriduced at the end.Keeping in view the present style of university Question papers,a number of very short,short and long thoroughly revised and corrected to remove the errors which crept into earlier editions.
Basic Digital Electronics
Author: J.A. Strong
Publisher: Springer Science & Business Media
ISBN: 940113118X
Category : Science
Languages : en
Pages : 231
Book Description
Modern electronics is the most visible result of research in solid state physics. Transistors and integrated circuits are used everywhere in ever increasing numbers. The microprocessor controlled coffee-pot exists. Most experimental physicists, and, indeed, experimental scientists in most disciplines, study their subject with the aid of apparatus containing significant amounts of electronics and much of that electronics is digital. In order to design experiments and apparatus or simply to understand how a piece of equipment works, an under standing of electronics has become increasingly important. In recognition that electronics has pervaded so many areas, courses in digital electronics are now a recommended part of physics and many other science degree courses. At the introductory level, digital electronics is, primarily, a practical subject with relatively few basic concepts and any complex ity arises from the coupling together of many simple circuits and the extensive use of feedback. Designing an electronic circuit and then getting it to work correctly provides an experience, and a sense of achievement, which is significantly different from most undergradu ate work as it more closely resembles project work than standard laboratory practicals.
Publisher: Springer Science & Business Media
ISBN: 940113118X
Category : Science
Languages : en
Pages : 231
Book Description
Modern electronics is the most visible result of research in solid state physics. Transistors and integrated circuits are used everywhere in ever increasing numbers. The microprocessor controlled coffee-pot exists. Most experimental physicists, and, indeed, experimental scientists in most disciplines, study their subject with the aid of apparatus containing significant amounts of electronics and much of that electronics is digital. In order to design experiments and apparatus or simply to understand how a piece of equipment works, an under standing of electronics has become increasingly important. In recognition that electronics has pervaded so many areas, courses in digital electronics are now a recommended part of physics and many other science degree courses. At the introductory level, digital electronics is, primarily, a practical subject with relatively few basic concepts and any complex ity arises from the coupling together of many simple circuits and the extensive use of feedback. Designing an electronic circuit and then getting it to work correctly provides an experience, and a sense of achievement, which is significantly different from most undergradu ate work as it more closely resembles project work than standard laboratory practicals.