Electron Microscopy in Solid State Physics

Electron Microscopy in Solid State Physics PDF Author: Heinz Bethge
Publisher: Elsevier Publishing Company
ISBN:
Category : Science
Languages : en
Pages : 604

Get Book Here

Book Description
In almost all fields of research of science, engineering and medicine, electron microscopy as a method of directly imaging submicroscopic structures has become increasingly important. This book reports on the capabilities and limitations of the application of electron microscopy to solid state physics and materials science. The book is divided into two parts. In the first part, the methods of electron microscope examination employed in solid state physics are described, with special reference to the reliable interpretation of electron micrographs. The second part of the book deals with applications and covers those fields of solid state physics and materials science to which electron microscopy may appreciably contribute. The book is intended as a review for a wide circle of readers including solid state physicists and materials scientists. Those already familiar with electron microscopy will appreciate the up-to-date information on the latest methods and applications. Those who are not so familiar with electron microscopy will find the book to be a valuable introduction to the various fields of application, illustrated by a wealth of specially chosen examples.

Electron Microscopy in Solid State Physics

Electron Microscopy in Solid State Physics PDF Author: Heinz Bethge
Publisher: Elsevier Publishing Company
ISBN:
Category : Science
Languages : en
Pages : 604

Get Book Here

Book Description
In almost all fields of research of science, engineering and medicine, electron microscopy as a method of directly imaging submicroscopic structures has become increasingly important. This book reports on the capabilities and limitations of the application of electron microscopy to solid state physics and materials science. The book is divided into two parts. In the first part, the methods of electron microscope examination employed in solid state physics are described, with special reference to the reliable interpretation of electron micrographs. The second part of the book deals with applications and covers those fields of solid state physics and materials science to which electron microscopy may appreciably contribute. The book is intended as a review for a wide circle of readers including solid state physicists and materials scientists. Those already familiar with electron microscopy will appreciate the up-to-date information on the latest methods and applications. Those who are not so familiar with electron microscopy will find the book to be a valuable introduction to the various fields of application, illustrated by a wealth of specially chosen examples.

Handbook of Microscopy

Handbook of Microscopy PDF Author: S. Amelinckx
Publisher: John Wiley & Sons
ISBN: 3527620532
Category : Science
Languages : en
Pages : 507

Get Book Here

Book Description
Comprehensive in coverage, written and edited by leading experts in the field, this Handbook is a definitive, up-to-date reference work. The Volumes Methods I and Methods II detail the physico-chemical basis and capabilities of the various microscopy techniques used in materials science. The Volume Applications illustrates the results obtained by all available methods for the main classes of materials, showing which technique can be successfully applied to a given material in order to obtain the desired information. With the Handbook of Microscopy, scientists and engineers involved in materials characterization will be in a position to answer two key questions: "How does a given technique work?", and "Which techique is suitable for characterizing a given material?"

Solid State Physics

Solid State Physics PDF Author: James W. Corbett
Publisher:
ISBN:
Category : Matter
Languages : en
Pages : 440

Get Book Here

Book Description


Electron Energy-Loss Spectroscopy in the Electron Microscope

Electron Energy-Loss Spectroscopy in the Electron Microscope PDF Author: R.F. Egerton
Publisher: Springer Science & Business Media
ISBN: 1475750994
Category : Science
Languages : en
Pages : 491

Get Book Here

Book Description
to the Second Edition Since the first (1986) edition of this book, the numbers of installations, researchers, and research publications devoted to electron energy-loss spec troscopy (EELS) in the electron microscope have continued to expand. There has been a trend towards intermediate accelerating voltages and field-emission sources, both favorable to energy-loss spectroscopy, and sev eral types of energy-filtering microscope are now available commercially. Data-acquisition hardware and software, based on personal computers, have become more convenient and user-friendly. Among university re searchers, much thought has been given to the interpretation and utilization of near-edge fine structure. Most importantly, there have been many practi cal applications of EELS. This may reflect an increased awareness of the potentialities of the technique, but in many cases it is the result of skill and persistence on the part of the experimenters, often graduate students. To take account of these developments, the book has been extensively revised (over a period of two years) and more than a third of it rewritten. I have made various minor changes to the figures and added about 80 new ones. Except for a few small changes, the notation is the same as in the first edition, with all equations in SI units.

Scanning Electron Microscopy

Scanning Electron Microscopy PDF Author: Ludwig Reimer
Publisher: Springer
ISBN: 3540389679
Category : Science
Languages : en
Pages : 538

Get Book Here

Book Description
Scanning Electron Microscopy provides a description of the physics of electron-probe formation and of electron-specimen interactions. The different imaging and analytical modes using secondary and backscattered electrons, electron-beam-induced currents, X-ray and Auger electrons, electron channelling effects, and cathodoluminescence are discussed to evaluate specific contrasts and to obtain quantitative information.

Transmission Electron Microscopy and Diffractometry of Materials

Transmission Electron Microscopy and Diffractometry of Materials PDF Author: Brent Fultz
Publisher: Springer Science & Business Media
ISBN: 3642297609
Category : Science
Languages : en
Pages : 775

Get Book Here

Book Description
This book explains concepts of transmission electron microscopy (TEM) and x-ray diffractometry (XRD) that are important for the characterization of materials. The fourth edition adds important new techniques of TEM such as electron tomography, nanobeam diffraction, and geometric phase analysis. A new chapter on neutron scattering completes the trio of x-ray, electron and neutron diffraction. All chapters were updated and revised for clarity. The book explains the fundamentals of how waves and wavefunctions interact with atoms in solids, and the similarities and differences of using x-rays, electrons, or neutrons for diffraction measurements. Diffraction effects of crystalline order, defects, and disorder in materials are explained in detail. Both practical and theoretical issues are covered. The book can be used in an introductory-level or advanced-level course, since sections are identified by difficulty. Each chapter includes a set of problems to illustrate principles, and the extensive Appendix includes laboratory exercises.

High-resolution Electron Microscopy

High-resolution Electron Microscopy PDF Author: John C. H. Spence
Publisher: Clarendon Press
ISBN: 9780198509158
Category : Business & Economics
Languages : en
Pages : 401

Get Book Here

Book Description
The discovery of the Nanotube in 1991 by electron microscopy has ushered in the era of Nanoscience. The atomic-resolution electron microscope has been a crucial tool in this effort. This book gives the basic theoretical background needed to understand how electron microscopes allow us to seeatoms, together with highly practical advice for electron microscope operators. The book covers the usefulness of seeing atoms in the semiconductor industry, in materials science (where scientists strive to make new lighter, stronger, cheaper materials), and condensed matter physics (for example inthe study of the new superconductors). Biologists have recently used the atomic-resolution electron microscope to obtain three-dimensional images of the Ribosome, work which is covered in this book. The book also shows how the ability to see atomic arrangements has helped us understand theproperties of matter.This new third edition of the standard text retains the early sections on the fundamentals of electron optics, linear imaging theory with partial coherence and multiple-scattering theory. Also preserved are updated earlier sections on practical methods, with detailed step-by-step accounts of theprocedures needed to obtain the highest quality images of the arrangement of atoms in thin crystals using a modern electron microscope. The sections on applications of atomic-resolution transmission electron microscopy (HREM) have been extensively updated, including descriptions of HREM in thesemiconductor industry, superconductor research, solid state chemistry and nanoscience, as well as metallurgy, mineralogy, condensed matter physics, materials science and biology. Entirely new sections have been added on electron holography, aberration correctors, field-emission guns, imagingfilters, HREM in biology and on organic crystals, super-resolution methods, Ptychography, CCD cameras and Image plates. New chapters are devoted entirely to scanning transmission electron microscopy and Z-contrast, and also to associated techniques, such as energy-loss spectrocospy, Alchemi,nanodiffraction and cathodoluminescence. Sources of software for image interpretation and electron-optical design are also given.

Transmission Electron Microscopy

Transmission Electron Microscopy PDF Author: Ludwig Reimer
Publisher: Springer
ISBN: 3662135531
Category : Science
Languages : en
Pages : 532

Get Book Here

Book Description
The aim of this book is to outline the physics of image formation, electron specimen interactions and image interpretation in transmission electron mic roscopy. The book evolved from lectures delivered at the University of Munster and is a revised version of the first part of my earlier book Elek tronenmikroskopische Untersuchungs- und Priiparationsmethoden, omitting the part which describes specimen-preparation methods. In the introductory chapter, the different types of electron microscope are compared, the various electron-specimen interactions and their applications are summarized and the most important aspects of high-resolution, analytical and high-voltage electron microscopy are discussed. The optics of electron lenses is discussed in Chapter 2 in order to bring out electron-lens properties that are important for an understanding of the function of an electron microscope. In Chapter 3, the wave optics of elec trons and the phase shifts by electrostatic and magnetic fields are introduced; Fresnel electron diffraction is treated using Huygens' principle. The recogni tion that the Fraunhofer-diffraction pattern is the Fourier transform of the wave amplitude behind a specimen is important because the influence of the imaging process on the contrast transfer of spatial frequencies can be described by introducing phase shifts and envelopes in the Fourier plane. In Chapter 4, the elements of an electron-optical column are described: the electron gun, the condenser and the imaging system. A thorough understanding of electron-specimen interactions is essential to explain image contrast.

Surface Microscopy with Low Energy Electrons

Surface Microscopy with Low Energy Electrons PDF Author: Ernst Bauer
Publisher: Springer
ISBN: 1493909355
Category : Technology & Engineering
Languages : en
Pages : 513

Get Book Here

Book Description
This book, written by a pioneer in surface physics and thin film research and the inventor of Low Energy Electron Microscopy (LEEM), Spin-Polarized Low Energy Electron Microscopy (SPLEEM) and Spectroscopic Photo Emission and Low Energy Electron Microscopy (SPELEEM), covers these and other techniques for the imaging of surfaces with low energy (slow) electrons. These techniques also include Photoemission Electron Microscopy (PEEM), X-ray Photoemission Electron Microscopy (XPEEM), and their combination with microdiffraction and microspectroscopy, all of which use cathode lenses and slow electrons. Of particular interest are the fundamentals and applications of LEEM, PEEM, and XPEEM because of their widespread use. Numerous illustrations illuminate the fundamental aspects of the electron optics, the experimental setup, and particularly the application results with these instruments. Surface Microscopy with Low Energy Electrons will give the reader a unified picture of the imaging, diffraction, and spectroscopy methods that are possible using low energy electron microscopes.

Transmission Electron Microscopy

Transmission Electron Microscopy PDF Author: C. Barry Carter
Publisher: Springer
ISBN: 3319266519
Category : Technology & Engineering
Languages : en
Pages : 543

Get Book Here

Book Description
This text is a companion volume to Transmission Electron Microscopy: A Textbook for Materials Science by Williams and Carter. The aim is to extend the discussion of certain topics that are either rapidly changing at this time or that would benefit from more detailed discussion than space allowed in the primary text. World-renowned researchers have contributed chapters in their area of expertise, and the editors have carefully prepared these chapters to provide a uniform tone and treatment for this exciting material. The book features an unparalleled collection of color figures showcasing the quality and variety of chemical data that can be obtained from today’s instruments, as well as key pitfalls to avoid. As with the previous TEM text, each chapter contains two sets of questions, one for self assessment and a second more suitable for homework assignments. Throughout the book, the style follows that of Williams & Carter even when the subject matter becomes challenging—the aim is always to make the topic understandable by first-year graduate students and others who are working in the field of Materials Science Topics covered include sources, in-situ experiments, electron diffraction, Digital Micrograph, waves and holography, focal-series reconstruction and direct methods, STEM and tomography, energy-filtered TEM (EFTEM) imaging, and spectrum imaging. The range and depth of material makes this companion volume essential reading for the budding microscopist and a key reference for practicing researchers using these and related techniques.