Author: Richard J. Sasiela
Publisher: Springer Science & Business Media
ISBN: 3642850707
Category : Science
Languages : en
Pages : 309
Book Description
Electromagnetic Wave Propagation in Turbulence is devoted to a method for obtaining analytical solutions to problems of electromagnetic wave propagation in turbulence. In a systematic way the monograph presents the Mellin transforms to evaluate analytically integrals that are not in integral tables. Ample examples of application are outlined and solutions for many problems in turbulence theory are given. The method itself relates to asymptotic results that are applicable to a broad class of problems for which many asymptotic methods had to be employed previously.
Electromagnetic Wave Propagation in Turbulence
Author: Richard J. Sasiela
Publisher: Springer Science & Business Media
ISBN: 3642850707
Category : Science
Languages : en
Pages : 309
Book Description
Electromagnetic Wave Propagation in Turbulence is devoted to a method for obtaining analytical solutions to problems of electromagnetic wave propagation in turbulence. In a systematic way the monograph presents the Mellin transforms to evaluate analytically integrals that are not in integral tables. Ample examples of application are outlined and solutions for many problems in turbulence theory are given. The method itself relates to asymptotic results that are applicable to a broad class of problems for which many asymptotic methods had to be employed previously.
Publisher: Springer Science & Business Media
ISBN: 3642850707
Category : Science
Languages : en
Pages : 309
Book Description
Electromagnetic Wave Propagation in Turbulence is devoted to a method for obtaining analytical solutions to problems of electromagnetic wave propagation in turbulence. In a systematic way the monograph presents the Mellin transforms to evaluate analytically integrals that are not in integral tables. Ample examples of application are outlined and solutions for many problems in turbulence theory are given. The method itself relates to asymptotic results that are applicable to a broad class of problems for which many asymptotic methods had to be employed previously.
The Effects of the Turbulent Atmosphere on Wave Propagation
Author: Valerʹi︠a︡n Ilʹich Tatarskiĭ
Publisher:
ISBN:
Category : Atmospheric turbulence
Languages : en
Pages : 492
Book Description
Publisher:
ISBN:
Category : Atmospheric turbulence
Languages : en
Pages : 492
Book Description
Wave Propagation in a Turbulent Medium
Author: Valerian Ilich Tatarski
Publisher: Courier Dover Publications
ISBN: 0486810291
Category : Science
Languages : en
Pages : 305
Book Description
This monograph describes the phenomena associated with the propagation of electromagnetic and acoustic waves through atmospheric turbulence. Geared toward specialists in radiophysics and atmospheric acoustics and optics, the treatment is also suitable for advanced undergraduates and graduate students. The author stresses applications to phase and amplitude fluctuations, scintillation of stars, radio scattering, and other problems. Part I covers topics from the theory of random fields and turbulence theory, including statistical description. Part II, on the scattering of waves in the turbulent atmosphere, is supplemented by an appendix on scattering of acoustic radiation. Part III offers a detailed presentation of line-of-sight propagation of acoustic and electromagnetic waves through a turbulent medium. Part IV concludes the text with a comparison of theory with experimental data
Publisher: Courier Dover Publications
ISBN: 0486810291
Category : Science
Languages : en
Pages : 305
Book Description
This monograph describes the phenomena associated with the propagation of electromagnetic and acoustic waves through atmospheric turbulence. Geared toward specialists in radiophysics and atmospheric acoustics and optics, the treatment is also suitable for advanced undergraduates and graduate students. The author stresses applications to phase and amplitude fluctuations, scintillation of stars, radio scattering, and other problems. Part I covers topics from the theory of random fields and turbulence theory, including statistical description. Part II, on the scattering of waves in the turbulent atmosphere, is supplemented by an appendix on scattering of acoustic radiation. Part III offers a detailed presentation of line-of-sight propagation of acoustic and electromagnetic waves through a turbulent medium. Part IV concludes the text with a comparison of theory with experimental data
Electromagnetic Wave Propagation, Radiation, and Scattering
Author: Akira Ishimaru
Publisher: John Wiley & Sons
ISBN: 1119079535
Category : Science
Languages : en
Pages : 1045
Book Description
One of the most methodical treatments of electromagnetic wave propagation, radiation, and scattering—including new applications and ideas Presented in two parts, this book takes an analytical approach on the subject and emphasizes new ideas and applications used today. Part one covers fundamentals of electromagnetic wave propagation, radiation, and scattering. It provides ample end-of-chapter problems and offers a 90-page solution manual to help readers check and comprehend their work. The second part of the book explores up-to-date applications of electromagnetic waves—including radiometry, geophysical remote sensing and imaging, and biomedical and signal processing applications. Written by a world renowned authority in the field of electromagnetic research, this new edition of Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications presents detailed applications with useful appendices, including mathematical formulas, Airy function, Abel’s equation, Hilbert transform, and Riemann surfaces. The book also features newly revised material that focuses on the following topics: Statistical wave theories—which have been extensively applied to topics such as geophysical remote sensing, bio-electromagnetics, bio-optics, and bio-ultrasound imaging Integration of several distinct yet related disciplines, such as statistical wave theories, communications, signal processing, and time reversal imaging New phenomena of multiple scattering, such as coherent scattering and memory effects Multiphysics applications that combine theories for different physical phenomena, such as seismic coda waves, stochastic wave theory, heat diffusion, and temperature rise in biological and other media Metamaterials and solitons in optical fibers, nonlinear phenomena, and porous media Primarily a textbook for graduate courses in electrical engineering, Electromagnetic Wave Propagation, Radiation, and Scattering is also ideal for graduate students in bioengineering, geophysics, ocean engineering, and geophysical remote sensing. The book is also a useful reference for engineers and scientists working in fields such as geophysical remote sensing, bio–medical engineering in optics and ultrasound, and new materials and integration with signal processing.
Publisher: John Wiley & Sons
ISBN: 1119079535
Category : Science
Languages : en
Pages : 1045
Book Description
One of the most methodical treatments of electromagnetic wave propagation, radiation, and scattering—including new applications and ideas Presented in two parts, this book takes an analytical approach on the subject and emphasizes new ideas and applications used today. Part one covers fundamentals of electromagnetic wave propagation, radiation, and scattering. It provides ample end-of-chapter problems and offers a 90-page solution manual to help readers check and comprehend their work. The second part of the book explores up-to-date applications of electromagnetic waves—including radiometry, geophysical remote sensing and imaging, and biomedical and signal processing applications. Written by a world renowned authority in the field of electromagnetic research, this new edition of Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications presents detailed applications with useful appendices, including mathematical formulas, Airy function, Abel’s equation, Hilbert transform, and Riemann surfaces. The book also features newly revised material that focuses on the following topics: Statistical wave theories—which have been extensively applied to topics such as geophysical remote sensing, bio-electromagnetics, bio-optics, and bio-ultrasound imaging Integration of several distinct yet related disciplines, such as statistical wave theories, communications, signal processing, and time reversal imaging New phenomena of multiple scattering, such as coherent scattering and memory effects Multiphysics applications that combine theories for different physical phenomena, such as seismic coda waves, stochastic wave theory, heat diffusion, and temperature rise in biological and other media Metamaterials and solitons in optical fibers, nonlinear phenomena, and porous media Primarily a textbook for graduate courses in electrical engineering, Electromagnetic Wave Propagation, Radiation, and Scattering is also ideal for graduate students in bioengineering, geophysics, ocean engineering, and geophysical remote sensing. The book is also a useful reference for engineers and scientists working in fields such as geophysical remote sensing, bio–medical engineering in optics and ultrasound, and new materials and integration with signal processing.
Optical Beam Propagation in Turbulent Media
Author: Ronald Louis Fante
Publisher:
ISBN:
Category : Atmospheric turbulence
Languages : en
Pages : 88
Book Description
The most recent developments on the propagation of microwave and optical beams in turbulent media, such as the clear atmosphere are discussed. Among the phenomena considered are beam spreading, beam wander, loss of coherence, scintillations, angle-of-arrival variations, and short pulse effects. Also included is a discussion of methods of compensation of the effect of turbulence on communications and imaging systems.
Publisher:
ISBN:
Category : Atmospheric turbulence
Languages : en
Pages : 88
Book Description
The most recent developments on the propagation of microwave and optical beams in turbulent media, such as the clear atmosphere are discussed. Among the phenomena considered are beam spreading, beam wander, loss of coherence, scintillations, angle-of-arrival variations, and short pulse effects. Also included is a discussion of methods of compensation of the effect of turbulence on communications and imaging systems.
Propagation in Turbulent Media
Author: Ronald Louis Fante
Publisher:
ISBN:
Category : Atmospheric turbulence
Languages : en
Pages : 48
Book Description
In this report the author has reviewed the recent developments on beam propagation in a turbulent medium. These include the effect of the turbulence on beam intensity, spread, coherence, wander, angle of arrival, scintillation and distortion, as well as other related topics.
Publisher:
ISBN:
Category : Atmospheric turbulence
Languages : en
Pages : 48
Book Description
In this report the author has reviewed the recent developments on beam propagation in a turbulent medium. These include the effect of the turbulence on beam intensity, spread, coherence, wander, angle of arrival, scintillation and distortion, as well as other related topics.
Wave Propagation and Scattering in Random Media
Author: Akira Ishimaru
Publisher: John Wiley & Sons
ISBN: 9780780347175
Category : Education
Languages : en
Pages : 608
Book Description
Electrical Engineering Wave Propagation and Scattering in Random Media A volume in the IEEE/OUP Series on Electromagnetic Wave Theory Donald G. Dudley, Series Editor This IEEE Classic Reissue presents a unified introduction to the fundamental theories and applications of wave propagation and scattering in random media. Now for the first time, the two volumes of Wave Propagation and Scattering in Random Media previously published by Academic Press in 1978 are combined into one comprehensive volume. This book presents a clear picture of how waves interact with the atmosphere, terrain, ocean, turbulence, aerosols, rain, snow, biological tissues, composite material, and other media. The theories presented will enable you to solve a variety of problems relating to clutter, interference, imaging, object detection, and communication theory for various media. This book is expressly designed for engineers and scientists who have an interest in optical, microwave, or acoustic wave propagation and scattering. Topics covered include: Wave characteristics in aerosols and hydrometeors Optical and acoustic scattering in sea water Scattering from biological materials Pulse scattering and beam wave propagation in such media Optical diffusion in tissues and blood Transport and radiative transfer theory Kubelka—Munk flux theory and plane-parallel problem Multiple scattering theory Wave fluctuations in turbulence Strong fluctuation theory Rough surface scattering Remote sensing and inversion techniques Imaging through various media About the IEEE/OUP Series on Electromagnetic Wave Theory Formerly the IEEE Press Series on Electromagnetic Waves, this joint series between IEEE Press and Oxford University Press offers outstanding coverage of the field with new titles as well as reprintings and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level. See page il of the front matter for a listing of books in this series.
Publisher: John Wiley & Sons
ISBN: 9780780347175
Category : Education
Languages : en
Pages : 608
Book Description
Electrical Engineering Wave Propagation and Scattering in Random Media A volume in the IEEE/OUP Series on Electromagnetic Wave Theory Donald G. Dudley, Series Editor This IEEE Classic Reissue presents a unified introduction to the fundamental theories and applications of wave propagation and scattering in random media. Now for the first time, the two volumes of Wave Propagation and Scattering in Random Media previously published by Academic Press in 1978 are combined into one comprehensive volume. This book presents a clear picture of how waves interact with the atmosphere, terrain, ocean, turbulence, aerosols, rain, snow, biological tissues, composite material, and other media. The theories presented will enable you to solve a variety of problems relating to clutter, interference, imaging, object detection, and communication theory for various media. This book is expressly designed for engineers and scientists who have an interest in optical, microwave, or acoustic wave propagation and scattering. Topics covered include: Wave characteristics in aerosols and hydrometeors Optical and acoustic scattering in sea water Scattering from biological materials Pulse scattering and beam wave propagation in such media Optical diffusion in tissues and blood Transport and radiative transfer theory Kubelka—Munk flux theory and plane-parallel problem Multiple scattering theory Wave fluctuations in turbulence Strong fluctuation theory Rough surface scattering Remote sensing and inversion techniques Imaging through various media About the IEEE/OUP Series on Electromagnetic Wave Theory Formerly the IEEE Press Series on Electromagnetic Waves, this joint series between IEEE Press and Oxford University Press offers outstanding coverage of the field with new titles as well as reprintings and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level. See page il of the front matter for a listing of books in this series.
Advances In Wave Turbulence
Author: Victor Shrira
Publisher: World Scientific
ISBN: 9814520802
Category : Mathematics
Languages : en
Pages : 294
Book Description
Wave or weak turbulence is a branch of science concerned with the evolution of random wave fields of all kinds and on all scales, from waves in galaxies to capillary waves on water surface, from waves in nonlinear optics to quantum fluids. In spite of the enormous diversity of wave fields in nature, there is a common conceptual and mathematical core which allows to describe the processes of random wave interactions within the same conceptual paradigm, and in the same language. The development of this core and its links with the applications is the essence of wave turbulence science (WT) which is an established integral part of nonlinear science.The book comprising seven reviews aims at discussing new challenges in WT and perspectives of its development. A special emphasis is made upon the links between the theory and experiment. Each of the reviews is devoted to a particular field of application (there is no overlap), or a novel approach or idea. The reviews cover a variety of applications of WT, including water waves, optical fibers, WT experiments on a metal plate and observations of astrophysical WT.
Publisher: World Scientific
ISBN: 9814520802
Category : Mathematics
Languages : en
Pages : 294
Book Description
Wave or weak turbulence is a branch of science concerned with the evolution of random wave fields of all kinds and on all scales, from waves in galaxies to capillary waves on water surface, from waves in nonlinear optics to quantum fluids. In spite of the enormous diversity of wave fields in nature, there is a common conceptual and mathematical core which allows to describe the processes of random wave interactions within the same conceptual paradigm, and in the same language. The development of this core and its links with the applications is the essence of wave turbulence science (WT) which is an established integral part of nonlinear science.The book comprising seven reviews aims at discussing new challenges in WT and perspectives of its development. A special emphasis is made upon the links between the theory and experiment. Each of the reviews is devoted to a particular field of application (there is no overlap), or a novel approach or idea. The reviews cover a variety of applications of WT, including water waves, optical fibers, WT experiments on a metal plate and observations of astrophysical WT.
Geodetic Refraction
Author: F.K. Brunner
Publisher: Springer Science & Business Media
ISBN: 3642455832
Category : Science
Languages : en
Pages : 222
Book Description
With very few exceptions, geodetic measurements use electro magnetic radiation in order to measure directions, distances, time delays, and Doppler frequency shifts, to name the main ter restrial and space observables. Depending on the wavelength of the radiation and the purpose of the measurements, the follow ing parameters of the electromagnetic wave are measured: ampli tude, phase, angle-of-arrival, polarisation and frequency. Ac curate corrections have to be applied to the measurements in order to take into account the effects of the intervening medium between transmitter and receiver. The known solutions use at mospheric models, special observation programs, remote sensing techniques and instrumental methods. It has been shown that the effects of the earth's atmospheric envelope present a fundamental limitation to the accuracy and precision of geodetic measurements. This applies equally to ter restrial and space applications. Instrumental accuracies are al ready below the atmospherically induced limitations, and thus the accuracy demands on the geodetic refraction solutions are entering a new magnitude zone. This monograph is primarily devoted to the properties of the at mospheric effects on various geodetic measurements and to their evaluation. Ten review papers cover the most pressing aspects of the atmospheric effects on geodetic measurement~. Ttiese state of-the art papers were written by eminent specialists in their respective research fields.
Publisher: Springer Science & Business Media
ISBN: 3642455832
Category : Science
Languages : en
Pages : 222
Book Description
With very few exceptions, geodetic measurements use electro magnetic radiation in order to measure directions, distances, time delays, and Doppler frequency shifts, to name the main ter restrial and space observables. Depending on the wavelength of the radiation and the purpose of the measurements, the follow ing parameters of the electromagnetic wave are measured: ampli tude, phase, angle-of-arrival, polarisation and frequency. Ac curate corrections have to be applied to the measurements in order to take into account the effects of the intervening medium between transmitter and receiver. The known solutions use at mospheric models, special observation programs, remote sensing techniques and instrumental methods. It has been shown that the effects of the earth's atmospheric envelope present a fundamental limitation to the accuracy and precision of geodetic measurements. This applies equally to ter restrial and space applications. Instrumental accuracies are al ready below the atmospherically induced limitations, and thus the accuracy demands on the geodetic refraction solutions are entering a new magnitude zone. This monograph is primarily devoted to the properties of the at mospheric effects on various geodetic measurements and to their evaluation. Ten review papers cover the most pressing aspects of the atmospheric effects on geodetic measurement~. Ttiese state of-the art papers were written by eminent specialists in their respective research fields.
Remote Sensing of Turbulence
Author: Victor Raizer
Publisher: CRC Press
ISBN: 1000458806
Category : Technology & Engineering
Languages : en
Pages : 293
Book Description
This book offers a unique multidisciplinary integration of the physics of turbulence and remote sensing technology. Remote Sensing of Turbulence provides a new vision on the research of turbulence and summarizes the current and future challenges of monitoring turbulence remotely. The book emphasizes sophisticated geophysical applications, detection, and recognition of complex turbulent flows in oceans and the atmosphere. Through several techniques based on microwave and optical/IR observations, the text explores the technological capabilities and tools for the detection of turbulence, their signatures, and variability. FEATURES Covers the fundamental aspects of turbulence problems with a broad geophysical scope for a wide audience of readers Provides a complete description of remote-sensing capabilities for observing turbulence in the earth’s environment Establishes the state-of-the-art remote-sensing techniques and methods of data analysis for turbulence detection Investigates and evaluates turbulence detection signatures, their properties, and variability Provides cutting-edge remote-sensing applications for space-based monitoring and forecasts of turbulence in oceans and the atmosphere This book is a great resource for applied physicists, the professional remote sensing community, ecologists, geophysicists, and earth scientists.
Publisher: CRC Press
ISBN: 1000458806
Category : Technology & Engineering
Languages : en
Pages : 293
Book Description
This book offers a unique multidisciplinary integration of the physics of turbulence and remote sensing technology. Remote Sensing of Turbulence provides a new vision on the research of turbulence and summarizes the current and future challenges of monitoring turbulence remotely. The book emphasizes sophisticated geophysical applications, detection, and recognition of complex turbulent flows in oceans and the atmosphere. Through several techniques based on microwave and optical/IR observations, the text explores the technological capabilities and tools for the detection of turbulence, their signatures, and variability. FEATURES Covers the fundamental aspects of turbulence problems with a broad geophysical scope for a wide audience of readers Provides a complete description of remote-sensing capabilities for observing turbulence in the earth’s environment Establishes the state-of-the-art remote-sensing techniques and methods of data analysis for turbulence detection Investigates and evaluates turbulence detection signatures, their properties, and variability Provides cutting-edge remote-sensing applications for space-based monitoring and forecasts of turbulence in oceans and the atmosphere This book is a great resource for applied physicists, the professional remote sensing community, ecologists, geophysicists, and earth scientists.