Electromagnetic Modeling by Finite Element Methods

Electromagnetic Modeling by Finite Element Methods PDF Author: João Pedro A. Bastos
Publisher: CRC Press
ISBN: 9780203911174
Category : Technology & Engineering
Languages : en
Pages : 512

Get Book Here

Book Description
Unlike any other source in the field, this valuable reference clearly examines key aspects of the finite element method (FEM) for electromagnetic analysis of low-frequency electrical devices. The authors examine phenomena such as nonlinearity, mechanical force, electrical circuit coupling, vibration, heat, and movement for applications in the elect

Electromagnetic Modeling by Finite Element Methods

Electromagnetic Modeling by Finite Element Methods PDF Author: João Pedro A. Bastos
Publisher: CRC Press
ISBN: 9780203911174
Category : Technology & Engineering
Languages : en
Pages : 512

Get Book Here

Book Description
Unlike any other source in the field, this valuable reference clearly examines key aspects of the finite element method (FEM) for electromagnetic analysis of low-frequency electrical devices. The authors examine phenomena such as nonlinearity, mechanical force, electrical circuit coupling, vibration, heat, and movement for applications in the elect

The Finite Element Method for Electromagnetic Modeling

The Finite Element Method for Electromagnetic Modeling PDF Author: Gérard Meunier
Publisher: John Wiley & Sons
ISBN: 0470393807
Category : Science
Languages : en
Pages : 618

Get Book Here

Book Description
Written by specialists of modeling in electromagnetism, this book provides a comprehensive review of the finite element method for low frequency applications. Fundamentals of the method as well as new advances in the field are described in detail. Chapters 1 to 4 present general 2D and 3D static and dynamic formulations by the use of scalar and vector unknowns and adapted interpolations for the fields (nodal, edge, face or volume). Chapter 5 is dedicated to the presentation of different macroscopic behavior laws of materials and their implementation in a finite element context: anisotropy and hysteretic properties for magnetic sheets, iron losses, non-linear permanent magnets and superconductors. More specific formulations are then proposed: the modeling of thin regions when finite elements become misfit (Chapter 6), infinite domains by using geometrical transformations (Chapter 7), the coupling of 2D and 3D formulations with circuit equations (Chapter 8), taking into account the movement, particularly in the presence of Eddy currents (Chapter 9) and an original approach for the treatment of geometrical symmetries when the sources are not symmetric (Chapter 10). Chapters 11 to 13 are devoted to coupled problems: magneto-thermal coupling for induction heating, magneto-mechanical coupling by introducing the notion of strong and weak coupling and magneto-hydrodynamical coupling focusing on electromagnetic instabilities in fluid conductors. Chapter 14 presents different meshing methods in the context of electromagnetism (presence of air) and introduces self-adaptive mesh refinement procedures. Optimization techniques are then covered in Chapter 15, with the adaptation of deterministic and probabilistic methods to the numerical finite element environment. Chapter 16 presents a variational approach of electromagnetism, showing how Maxwell equations are derived from thermodynamic principles.

The Finite Element Method in Electromagnetics

The Finite Element Method in Electromagnetics PDF Author: Jian-Ming Jin
Publisher: John Wiley & Sons
ISBN: 1118842022
Category : Science
Languages : en
Pages : 728

Get Book Here

Book Description
A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The Finite Element Method in Electromagnetics, Third Edition explains the method’s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications—giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems. Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes: A wider range of applications, including antennas, phased arrays, electric machines, high-frequency circuits, and crystal photonics The finite element analysis of wave propagation, scattering, and radiation in periodic structures The time-domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena Novel domain decomposition techniques for parallel computation and efficient simulation of large-scale problems, such as phased-array antennas and photonic crystals Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.

Finite Elements, Electromagnetics and Design

Finite Elements, Electromagnetics and Design PDF Author: S.R.H. Hoole
Publisher: Elsevier
ISBN: 0080531687
Category : Technology & Engineering
Languages : en
Pages : 668

Get Book Here

Book Description
Advanced topics of research in field computation are explored in this publication. Contributions have been sourced from international experts, ensuring a comprehensive specialist perspective. A unity of style has been achieved by the editor, who has specifically inserted appropriate cross-references throughout the volume, plus a single collected set of references at the end. The book provides a multi-faceted overview of the power and effectiveness of computation techniques in engineering electromagnetics. In addition to examining recent and current developments, it is hoped that it will stimulate further research in the field.

Modeling and Computations in Electromagnetics

Modeling and Computations in Electromagnetics PDF Author: Habib Ammari
Publisher: Springer Science & Business Media
ISBN: 3540737782
Category : Technology & Engineering
Languages : en
Pages : 239

Get Book Here

Book Description
This is nothing less than an essential text in what is a new and growing discipline. Electromagnetic modeling and computations is expanding as a result of the steadily increasing demand for designing electrical devices, modeling electromagnetic materials, and simulating electromagnetic fields in nanoscale structures. The aim of this volume is to bring together prominent worldwide experts to review state-of-the-art developments and future trends of modeling and computations in electromagnetics.

MATLAB-based Finite Element Programming in Electromagnetic Modeling

MATLAB-based Finite Element Programming in Electromagnetic Modeling PDF Author: Özlem Özgün
Publisher: CRC Press
ISBN: 0429854609
Category : Technology & Engineering
Languages : en
Pages : 428

Get Book Here

Book Description
This book is a self-contained, programming-oriented and learner-centered book on finite element method (FEM), with special emphasis given to developing MATLAB® programs for numerical modeling of electromagnetic boundary value problems. It provides a deep understanding and intuition of FEM programming by means of step-by-step MATLAB® programs with detailed descriptions, and eventually enabling the readers to modify, adapt and apply the provided programs and formulations to develop FEM codes for similar problems through various exercises. It starts with simple one-dimensional static and time-harmonic problems and extends the developed theory to more complex two- or three-dimensional problems. It supplies sufficient theoretical background on the topic, and it thoroughly covers all phases (pre-processing, main body and post-processing) in FEM. FEM formulations are obtained for boundary value problems governed by a partial differential equation that is expressed in terms of a generic unknown function, and then, these formulations are specialized to various electromagnetic applications together with a post-processing phase. Since the method is mostly described in a general context, readers from other disciplines can also use this book and easily adapt the provided codes to their engineering problems. After forming a solid background on the fundamentals of FEM by means of canonical problems, readers are guided to more advanced applications of FEM in electromagnetics through a survey chapter at the end of the book. Offers a self-contained and easy-to-understand introduction to the theory and programming of finite element method. Covers various applications in the field of static and time-harmonic electromagnetics. Includes one-, two- and three-dimensional finite element codes in MATLAB®. Enables readers to develop finite element programming skills through various MATLAB® codes and exercises. Promotes self-directed learning skills and provides an effective instruction tool.

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials PDF Author: Jichun Li
Publisher: Springer Science & Business Media
ISBN: 3642337899
Category : Computers
Languages : en
Pages : 309

Get Book Here

Book Description
The purpose of this book is to provide an up-to-date introduction to the time-domain finite element methods for Maxwell’s equations involving metamaterials. Since the first successful construction of a metamaterial with both negative permittivity and permeability in 2000, the study of metamaterials has attracted significant attention from researchers across many disciplines. Thanks to enormous efforts on the part of engineers and physicists, metamaterials present great potential applications in antenna and radar design, sub-wavelength imaging, and invisibility cloak design. Hence the efficient simulation of electromagnetic phenomena in metamaterials has become a very important issue and is the subject of this book, in which various metamaterial modeling equations are introduced and justified mathematically. The development and practical implementation of edge finite element methods for metamaterial Maxwell’s equations are the main focus of the book. The book finishes with some interesting simulations such as backward wave propagation and time-domain cloaking with metamaterials.

Finite Element Method Electromagnetics

Finite Element Method Electromagnetics PDF Author: John L. Volakis
Publisher: John Wiley & Sons
ISBN: 9780780334250
Category : Science
Languages : en
Pages : 364

Get Book Here

Book Description
Employed in a large number of commercial electromagnetic simulation packages, the finite element method is one of the most popular and well-established numerical techniques in engineering. This book covers the theory, development, implementation, and application of the finite element method and its hybrid versions to electromagnetics. FINITE ELEMENT METHOD FOR ELECTROMAGNETICS begins with a step-by-step textbook presentation of the finite method and its variations then goes on to provide up-to-date coverage of three dimensional formulations and modern applications to open and closed domain problems. Worked out examples are included to aid the reader with the fine features of the method and the implementation of its hybridization with other techniques for a robust simulation of large scale radiation and scattering. The crucial treatment of local boundary conditions is carefully worked out in several stages in the book. Sponsored by: IEEE Antennas and Propagation Society.

Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB

Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB PDF Author: Sergey N. Makarov
Publisher: John Wiley & Sons
ISBN: 1119052467
Category : Science
Languages : en
Pages : 616

Get Book Here

Book Description
Provides a detailed and systematic description of the Method of Moments (Boundary Element Method) for electromagnetic modeling at low frequencies and includes hands-on, application-based MATLAB® modules with user-friendly and intuitive GUI and a highly visualized interactive output. Includes a full-body computational human phantom with over 120 triangular surface meshes extracted from the Visible Human Project® Female dataset of the National library of Medicine and fully compatible with MATLAB® and major commercial FEM/BEM electromagnetic software simulators. This book covers the basic concepts of computational low-frequency electromagnetics in an application-based format and hones the knowledge of these concepts with hands-on MATLAB® modules. The book is divided into five parts. Part 1 discusses low-frequency electromagnetics, basic theory of triangular surface mesh generation, and computational human phantoms. Part 2 covers electrostatics of conductors and dielectrics, and direct current flow. Linear magnetostatics is analyzed in Part 3. Part 4 examines theory and applications of eddy currents. Finally, Part 5 evaluates nonlinear electrostatics. Application examples included in this book cover all major subjects of low-frequency electromagnetic theory. In addition, this book includes complete or summarized analytical solutions to a large number of quasi-static electromagnetic problems. Each Chapter concludes with a summary of the corresponding MATLAB® modules. Combines fundamental electromagnetic theory and application-oriented computation algorithms in the form of stand alone MATLAB® modules Makes use of the three-dimensional Method of Moments (MoM) for static and quasistatic electromagnetic problems Contains a detailed full-body computational human phantom from the Visible Human Project® Female, embedded implant models, and a collection of homogeneous human shells Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB® is a resource for electrical and biomedical engineering students and practicing researchers, engineers, and medical doctors working on low-frequency modeling and bioelectromagnetic applications.

Electromagnetic Modeling by Finite Element Methods

Electromagnetic Modeling by Finite Element Methods PDF Author: João Pedro A. Bastos
Publisher: CRC Press
ISBN: 0824748603
Category : Technology & Engineering
Languages : en
Pages : 440

Get Book Here

Book Description
Unlike any other source in the field, this valuable reference clearly examines key aspects of the finite element method (FEM) for electromagnetic analysis of low-frequency electrical devices. The authors examine phenomena such as nonlinearity, mechanical force, electrical circuit coupling, vibration, heat, and movement for applications in the electrical, mechanical, nuclear, aeronautics, and transportation industries. Electromagnetic Modeling by Finite Element Methods offers a wide range of examples, including torque, vibration, and iron loss calculation; coupling of the FEM with mechanical equations, circuits, converters, and thermal effects; material modeling; and proven methods for hysteresis implementation into FEM codes. Providing experimental results and comparisons from the authors' personal research, Electromagnetic Modeling by Finite Element Methods supplies techniques to implement FEM for solving Maxwell's equations, analyze electrical and magnetic losses, determine the behavior of electrical machines, evaluate force distribution on a magnetic medium, simulate movement in electrical machines and electromagnetic devices fed by external circuits or static converters, and analyze the vibrational behavior of electrical machines.