Author: David A. Hill
Publisher: John Wiley & Sons
ISBN: 9780470495049
Category : Technology & Engineering
Languages : en
Pages : 296
Book Description
A thorough and rigorous analysis of electromagnetic fields in cavities This book offers a comprehensive analysis of electromagnetic fields in cavities of general shapes and properties. Part One covers classical deterministic methods to conclude resonant frequencies, modal fields, and cavity losses; quality factor; mode bandwidth; and the excitation of cavity fields from arbitrary current distributions for metal-wall cavities of simple shape. Part Two covers modern statistical methods to analyze electrically large cavities of complex shapes and properties. Electromagnetic Fields in Cavities combines rigorous solutions to Maxwell's equations with conservation of energy to solve for the statistics of many quantities of interest: penetration into cavities (and shielding effectiveness), field strengths far from and close to cavity walls, and power received by antennas within cavities. It includes all modes and shows you how to utilize fairly simple statistical formulae to apply to your particular problem, whether it's interference calculations, electromagnetic compatibility testing in reverberation chambers, measurement of shielding materials using multiple cavities, or efficiency of test antennas. Electromagnetic Fields in Cavities is a valuable resource for researchers, engineers, professors, and graduate students in electrical engineering.
Electromagnetic Fields in Cavities
Author: David A. Hill
Publisher: John Wiley & Sons
ISBN: 9780470495049
Category : Technology & Engineering
Languages : en
Pages : 296
Book Description
A thorough and rigorous analysis of electromagnetic fields in cavities This book offers a comprehensive analysis of electromagnetic fields in cavities of general shapes and properties. Part One covers classical deterministic methods to conclude resonant frequencies, modal fields, and cavity losses; quality factor; mode bandwidth; and the excitation of cavity fields from arbitrary current distributions for metal-wall cavities of simple shape. Part Two covers modern statistical methods to analyze electrically large cavities of complex shapes and properties. Electromagnetic Fields in Cavities combines rigorous solutions to Maxwell's equations with conservation of energy to solve for the statistics of many quantities of interest: penetration into cavities (and shielding effectiveness), field strengths far from and close to cavity walls, and power received by antennas within cavities. It includes all modes and shows you how to utilize fairly simple statistical formulae to apply to your particular problem, whether it's interference calculations, electromagnetic compatibility testing in reverberation chambers, measurement of shielding materials using multiple cavities, or efficiency of test antennas. Electromagnetic Fields in Cavities is a valuable resource for researchers, engineers, professors, and graduate students in electrical engineering.
Publisher: John Wiley & Sons
ISBN: 9780470495049
Category : Technology & Engineering
Languages : en
Pages : 296
Book Description
A thorough and rigorous analysis of electromagnetic fields in cavities This book offers a comprehensive analysis of electromagnetic fields in cavities of general shapes and properties. Part One covers classical deterministic methods to conclude resonant frequencies, modal fields, and cavity losses; quality factor; mode bandwidth; and the excitation of cavity fields from arbitrary current distributions for metal-wall cavities of simple shape. Part Two covers modern statistical methods to analyze electrically large cavities of complex shapes and properties. Electromagnetic Fields in Cavities combines rigorous solutions to Maxwell's equations with conservation of energy to solve for the statistics of many quantities of interest: penetration into cavities (and shielding effectiveness), field strengths far from and close to cavity walls, and power received by antennas within cavities. It includes all modes and shows you how to utilize fairly simple statistical formulae to apply to your particular problem, whether it's interference calculations, electromagnetic compatibility testing in reverberation chambers, measurement of shielding materials using multiple cavities, or efficiency of test antennas. Electromagnetic Fields in Cavities is a valuable resource for researchers, engineers, professors, and graduate students in electrical engineering.
Electromagnetic Fields
Author: Jean G. Van Bladel
Publisher: John Wiley & Sons
ISBN: 0471263885
Category : Science
Languages : en
Pages : 1188
Book Description
Professor Jean Van Bladel, an eminent researcher and educator in fundamental electromagnetic theory and its application in electrical engineering, has updated and expanded his definitive text and reference on electromagnetic fields to twice its original content. This new edition incorporates the latest methods, theory, formulations, and applications that relate to today's technologies. With an emphasis on basic principles and a focus on electromagnetic formulation and analysis, Electromagnetic Fields, Second Edition includes detailed discussions of electrostatic fields, potential theory, propagation in waveguides and unbounded space, scattering by obstacles, penetration through apertures, and field behavior at high and low frequencies.
Publisher: John Wiley & Sons
ISBN: 0471263885
Category : Science
Languages : en
Pages : 1188
Book Description
Professor Jean Van Bladel, an eminent researcher and educator in fundamental electromagnetic theory and its application in electrical engineering, has updated and expanded his definitive text and reference on electromagnetic fields to twice its original content. This new edition incorporates the latest methods, theory, formulations, and applications that relate to today's technologies. With an emphasis on basic principles and a focus on electromagnetic formulation and analysis, Electromagnetic Fields, Second Edition includes detailed discussions of electrostatic fields, potential theory, propagation in waveguides and unbounded space, scattering by obstacles, penetration through apertures, and field behavior at high and low frequencies.
Passive Microwave Device Applications of High Temperature Superconductors
Author: M. J. Lancaster
Publisher:
ISBN: 9780521480321
Category : Technology & Engineering
Languages : en
Pages : 340
Book Description
The first book on applications of high temperature superconductors in electrical engineering.
Publisher:
ISBN: 9780521480321
Category : Technology & Engineering
Languages : en
Pages : 340
Book Description
The first book on applications of high temperature superconductors in electrical engineering.
RF Linear Accelerators
Author: Thomas P. Wangler
Publisher: John Wiley & Sons
ISBN: 9783527406807
Category : Science
Languages : en
Pages : 476
Book Description
Dieses einschlägige Lehrbuch, entwickelt auf der Grundlage der Ausbildung an der US Particle Accelerator School, schließt eine Lücke in der verfügbaren Literatur zum Thema Hochfrequenz-Linearbeschleuniger, kurz RF-Linac. Nach einer Erläuterung der naturwissenschaftlichen Grundlagen und der neuesten technologischen Eckdaten stellt diese zweite Auflage neueste RF-Linacs, spezialisierte Systeme, Systeme mit Supraleitern und verschiedene Spezialverfahren vor. Übungsaufgaben an den Kapitelenden erleichtern das Einprägen und das Nacharbeiten von Vorlesungen.
Publisher: John Wiley & Sons
ISBN: 9783527406807
Category : Science
Languages : en
Pages : 476
Book Description
Dieses einschlägige Lehrbuch, entwickelt auf der Grundlage der Ausbildung an der US Particle Accelerator School, schließt eine Lücke in der verfügbaren Literatur zum Thema Hochfrequenz-Linearbeschleuniger, kurz RF-Linac. Nach einer Erläuterung der naturwissenschaftlichen Grundlagen und der neuesten technologischen Eckdaten stellt diese zweite Auflage neueste RF-Linacs, spezialisierte Systeme, Systeme mit Supraleitern und verschiedene Spezialverfahren vor. Übungsaufgaben an den Kapitelenden erleichtern das Einprägen und das Nacharbeiten von Vorlesungen.
Electromagnetic Wave Propagation, Radiation, and Scattering
Author: Akira Ishimaru
Publisher: John Wiley & Sons
ISBN: 1119079535
Category : Science
Languages : en
Pages : 1045
Book Description
One of the most methodical treatments of electromagnetic wave propagation, radiation, and scattering—including new applications and ideas Presented in two parts, this book takes an analytical approach on the subject and emphasizes new ideas and applications used today. Part one covers fundamentals of electromagnetic wave propagation, radiation, and scattering. It provides ample end-of-chapter problems and offers a 90-page solution manual to help readers check and comprehend their work. The second part of the book explores up-to-date applications of electromagnetic waves—including radiometry, geophysical remote sensing and imaging, and biomedical and signal processing applications. Written by a world renowned authority in the field of electromagnetic research, this new edition of Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications presents detailed applications with useful appendices, including mathematical formulas, Airy function, Abel’s equation, Hilbert transform, and Riemann surfaces. The book also features newly revised material that focuses on the following topics: Statistical wave theories—which have been extensively applied to topics such as geophysical remote sensing, bio-electromagnetics, bio-optics, and bio-ultrasound imaging Integration of several distinct yet related disciplines, such as statistical wave theories, communications, signal processing, and time reversal imaging New phenomena of multiple scattering, such as coherent scattering and memory effects Multiphysics applications that combine theories for different physical phenomena, such as seismic coda waves, stochastic wave theory, heat diffusion, and temperature rise in biological and other media Metamaterials and solitons in optical fibers, nonlinear phenomena, and porous media Primarily a textbook for graduate courses in electrical engineering, Electromagnetic Wave Propagation, Radiation, and Scattering is also ideal for graduate students in bioengineering, geophysics, ocean engineering, and geophysical remote sensing. The book is also a useful reference for engineers and scientists working in fields such as geophysical remote sensing, bio–medical engineering in optics and ultrasound, and new materials and integration with signal processing.
Publisher: John Wiley & Sons
ISBN: 1119079535
Category : Science
Languages : en
Pages : 1045
Book Description
One of the most methodical treatments of electromagnetic wave propagation, radiation, and scattering—including new applications and ideas Presented in two parts, this book takes an analytical approach on the subject and emphasizes new ideas and applications used today. Part one covers fundamentals of electromagnetic wave propagation, radiation, and scattering. It provides ample end-of-chapter problems and offers a 90-page solution manual to help readers check and comprehend their work. The second part of the book explores up-to-date applications of electromagnetic waves—including radiometry, geophysical remote sensing and imaging, and biomedical and signal processing applications. Written by a world renowned authority in the field of electromagnetic research, this new edition of Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications presents detailed applications with useful appendices, including mathematical formulas, Airy function, Abel’s equation, Hilbert transform, and Riemann surfaces. The book also features newly revised material that focuses on the following topics: Statistical wave theories—which have been extensively applied to topics such as geophysical remote sensing, bio-electromagnetics, bio-optics, and bio-ultrasound imaging Integration of several distinct yet related disciplines, such as statistical wave theories, communications, signal processing, and time reversal imaging New phenomena of multiple scattering, such as coherent scattering and memory effects Multiphysics applications that combine theories for different physical phenomena, such as seismic coda waves, stochastic wave theory, heat diffusion, and temperature rise in biological and other media Metamaterials and solitons in optical fibers, nonlinear phenomena, and porous media Primarily a textbook for graduate courses in electrical engineering, Electromagnetic Wave Propagation, Radiation, and Scattering is also ideal for graduate students in bioengineering, geophysics, ocean engineering, and geophysical remote sensing. The book is also a useful reference for engineers and scientists working in fields such as geophysical remote sensing, bio–medical engineering in optics and ultrasound, and new materials and integration with signal processing.
Particle Accelerator Physics
Author: Helmut Wiedemann
Publisher: Springer Science & Business Media
ISBN: 3662029030
Category : Science
Languages : en
Pages : 457
Book Description
Particle Accelerator Physics covers the dynamics of relativistic particle beams, basics of particle guidance and focusing, lattice design, characteristics of beam transport systems and circular accelerators. Particle-beam optics is treated in the linear approximation including sextupoles to correct for chromatic aberrations. Perturbations to linear beam dynamics are analyzed in detail and correction measures are discussed, while basic lattice design features and building blocks leading to the design of more complicated beam transport systems and circular accelerators are studied. Characteristics of synchrotron radiation and quantum effects due to the statistical emission of photons on particle trajectories are derived and applied to determine particle-beam parameters. The discussions specifically concentrate on relativistic particle beams and the physics of beam optics in beam transport systems and circular accelerators such as synchrotrons and storage rings. This book forms a broad basis for further, more detailed studies of nonlinear beam dynamics and associated accelerator physics problems, discussed in the subsequent volume.
Publisher: Springer Science & Business Media
ISBN: 3662029030
Category : Science
Languages : en
Pages : 457
Book Description
Particle Accelerator Physics covers the dynamics of relativistic particle beams, basics of particle guidance and focusing, lattice design, characteristics of beam transport systems and circular accelerators. Particle-beam optics is treated in the linear approximation including sextupoles to correct for chromatic aberrations. Perturbations to linear beam dynamics are analyzed in detail and correction measures are discussed, while basic lattice design features and building blocks leading to the design of more complicated beam transport systems and circular accelerators are studied. Characteristics of synchrotron radiation and quantum effects due to the statistical emission of photons on particle trajectories are derived and applied to determine particle-beam parameters. The discussions specifically concentrate on relativistic particle beams and the physics of beam optics in beam transport systems and circular accelerators such as synchrotrons and storage rings. This book forms a broad basis for further, more detailed studies of nonlinear beam dynamics and associated accelerator physics problems, discussed in the subsequent volume.
Theory and Computation of Electromagnetic Fields
Author: Jian-Ming Jin
Publisher: John Wiley & Sons
ISBN: 111910808X
Category : Science
Languages : en
Pages : 744
Book Description
Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.
Publisher: John Wiley & Sons
ISBN: 111910808X
Category : Science
Languages : en
Pages : 744
Book Description
Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.
Microwave and RF Vacuum Electronic Power Sources
Author: Richard G. Carter
Publisher: Cambridge University Press
ISBN: 0521198623
Category : Technology & Engineering
Languages : en
Pages : 843
Book Description
Get up-to-speed on the theory, principles and design of vacuum electron devices.
Publisher: Cambridge University Press
ISBN: 0521198623
Category : Technology & Engineering
Languages : en
Pages : 843
Book Description
Get up-to-speed on the theory, principles and design of vacuum electron devices.
Optical Microcavities
Author: Kerry Vahala
Publisher: World Scientific
ISBN: 9812387757
Category : Technology & Engineering
Languages : en
Pages : 517
Book Description
Optical microcavities are structures that enable confinement of light to microscale volumes. The universal importance of these structures has made them indispensable to a wide range of fields. This important book describes the many applications and the related physics, providing both a review and a tutorial of key subjects by leading researchers from each field. The topics include cavity QED and quantum information, nanophotonics and nanostructure interactions, wavelength switching and modulation in optical communications, optical chaos and biosensors.
Publisher: World Scientific
ISBN: 9812387757
Category : Technology & Engineering
Languages : en
Pages : 517
Book Description
Optical microcavities are structures that enable confinement of light to microscale volumes. The universal importance of these structures has made them indispensable to a wide range of fields. This important book describes the many applications and the related physics, providing both a review and a tutorial of key subjects by leading researchers from each field. The topics include cavity QED and quantum information, nanophotonics and nanostructure interactions, wavelength switching and modulation in optical communications, optical chaos and biosensors.
Confined Electrons and Photons
Author: Elias Burstein
Publisher: Springer Science & Business Media
ISBN: 1461519632
Category : Science
Languages : en
Pages : 900
Book Description
The optical properties of semiconductors have played an important role since the identification of semiconductors as "small" bandgap materials in the thinies, due both to their fundamental interest as a class of solids baving specific optical propenies and to their many important applications. On the former aspect we can cite the fundamental edge absorption and its assignment to direct or indirect transitions, many-body effects as revealed by exciton formation and photoconductivity. On the latter aspect, large-scale applications sucb as LEDs and lasers, photovoltaic converters, photodetectors, electro-optics and non-linear optic devices, come to mind. The eighties saw a revitalization of the whole field due to the advent of heterostructures of lower-dimensionality, mainly two-dimensional quantum wells, which through their enhanced photon-matter interaction yielded new devices with unsurpassed performance. Although many of the basic phenomena were evidenced through the seventies, it was this impact on applications which in turn led to such a massive investment in fabrication tools, thanks to which many new structures and materials were studied, yielding funher advances in fundamental physics.
Publisher: Springer Science & Business Media
ISBN: 1461519632
Category : Science
Languages : en
Pages : 900
Book Description
The optical properties of semiconductors have played an important role since the identification of semiconductors as "small" bandgap materials in the thinies, due both to their fundamental interest as a class of solids baving specific optical propenies and to their many important applications. On the former aspect we can cite the fundamental edge absorption and its assignment to direct or indirect transitions, many-body effects as revealed by exciton formation and photoconductivity. On the latter aspect, large-scale applications sucb as LEDs and lasers, photovoltaic converters, photodetectors, electro-optics and non-linear optic devices, come to mind. The eighties saw a revitalization of the whole field due to the advent of heterostructures of lower-dimensionality, mainly two-dimensional quantum wells, which through their enhanced photon-matter interaction yielded new devices with unsurpassed performance. Although many of the basic phenomena were evidenced through the seventies, it was this impact on applications which in turn led to such a massive investment in fabrication tools, thanks to which many new structures and materials were studied, yielding funher advances in fundamental physics.