Author: Maurice Weiner
Publisher: World Scientific
ISBN: 981322505X
Category : Science
Languages : en
Pages : 653
Book Description
This latest edition continues the evolution toward the ultimate realization of a new technique for solving electromagnetic propagation problems. The technique combines the classical and intuitive use of a transmission line matrix (TLM) while striving for consistency with the guideposts demanded by quantum mechanics and the essential structure of electromagnetic theory. The matrix then becomes a useful vehicle for examining both coherent and noncoherent electromagnetic waves. The goal is a mathematical tool capable of solving problems related to the propagation of transient, high-speed, complex waveforms containing both symmetric and plane wave components. For such waveforms, standard classical electromagnetic theory is unable to provide a truly accurate solution since it does not properly account for the correlations among the various TLM cells. The correlations among neighboring TLM cells allow the cell waves to sense one another and to collectively participate as a coherent wave.For arbitrary signals, e.g., complex, high speed, highly non-uniform signals, the correlation model must be placed on a firmer footing to insure the proper correlation strength based on the close adherence to quantum mechanical principles. The purpose of the Third Edition is to thereby improve the correlation model, and incorporate the model into the simulations. The simulation results thus obtained show great promise in describing the full range of electromagnetic phenomena. Wave divergence and diffraction simulations, employing both composite and shorter range correlation models, have been incorporated. The models employ correlation coefficients which may be linked with quantum mechanical parameters, thus providing a deeper understanding of coherent wave fronts.
Electromagnetic Analysis Using Transmission Line Variables (Third Edition)
Author: Maurice Weiner
Publisher: World Scientific
ISBN: 981322505X
Category : Science
Languages : en
Pages : 653
Book Description
This latest edition continues the evolution toward the ultimate realization of a new technique for solving electromagnetic propagation problems. The technique combines the classical and intuitive use of a transmission line matrix (TLM) while striving for consistency with the guideposts demanded by quantum mechanics and the essential structure of electromagnetic theory. The matrix then becomes a useful vehicle for examining both coherent and noncoherent electromagnetic waves. The goal is a mathematical tool capable of solving problems related to the propagation of transient, high-speed, complex waveforms containing both symmetric and plane wave components. For such waveforms, standard classical electromagnetic theory is unable to provide a truly accurate solution since it does not properly account for the correlations among the various TLM cells. The correlations among neighboring TLM cells allow the cell waves to sense one another and to collectively participate as a coherent wave.For arbitrary signals, e.g., complex, high speed, highly non-uniform signals, the correlation model must be placed on a firmer footing to insure the proper correlation strength based on the close adherence to quantum mechanical principles. The purpose of the Third Edition is to thereby improve the correlation model, and incorporate the model into the simulations. The simulation results thus obtained show great promise in describing the full range of electromagnetic phenomena. Wave divergence and diffraction simulations, employing both composite and shorter range correlation models, have been incorporated. The models employ correlation coefficients which may be linked with quantum mechanical parameters, thus providing a deeper understanding of coherent wave fronts.
Publisher: World Scientific
ISBN: 981322505X
Category : Science
Languages : en
Pages : 653
Book Description
This latest edition continues the evolution toward the ultimate realization of a new technique for solving electromagnetic propagation problems. The technique combines the classical and intuitive use of a transmission line matrix (TLM) while striving for consistency with the guideposts demanded by quantum mechanics and the essential structure of electromagnetic theory. The matrix then becomes a useful vehicle for examining both coherent and noncoherent electromagnetic waves. The goal is a mathematical tool capable of solving problems related to the propagation of transient, high-speed, complex waveforms containing both symmetric and plane wave components. For such waveforms, standard classical electromagnetic theory is unable to provide a truly accurate solution since it does not properly account for the correlations among the various TLM cells. The correlations among neighboring TLM cells allow the cell waves to sense one another and to collectively participate as a coherent wave.For arbitrary signals, e.g., complex, high speed, highly non-uniform signals, the correlation model must be placed on a firmer footing to insure the proper correlation strength based on the close adherence to quantum mechanical principles. The purpose of the Third Edition is to thereby improve the correlation model, and incorporate the model into the simulations. The simulation results thus obtained show great promise in describing the full range of electromagnetic phenomena. Wave divergence and diffraction simulations, employing both composite and shorter range correlation models, have been incorporated. The models employ correlation coefficients which may be linked with quantum mechanical parameters, thus providing a deeper understanding of coherent wave fronts.
Electromagnetic Analysis Using Transmission Line Variables (2nd Edition)
Author: Maurice Weiner
Publisher: World Scientific
ISBN: 9814466727
Category : Science
Languages : en
Pages : 515
Book Description
This book employs a relatively new method for solving electromagnetic problems, one which makes use of a transmission line matrix (TLM). The propagation space is imagined to be filled with this matrix. The propagating fields and physical properties are then mapped onto the matrix. Mathematically, the procedures are identical with the traditional numerical methods; however, the interpretation and physical appeal of the transmission line matrix are far superior. Any change in the matrix has an immediate physical significance. What is also very important is that the matrix becomes a launching pad for many improvements in the analysis, using more modern notions of electromagnetic waves. Eventually, the purely mathematical techniques will probably give way to the transmission line matrix method.Major revisions occur in chapters IV and VII in this second edition. The revised chapters now present an up-to-date and concise treatment on plane wave correlations and decorrelations, and provide a revised formulation of simulation to solve transient electromagnetic problems. It also takes into account semiconductors with arbitrary dielectric constant, using much smaller cell size, and extending the range of applicability and improving accuracy.
Publisher: World Scientific
ISBN: 9814466727
Category : Science
Languages : en
Pages : 515
Book Description
This book employs a relatively new method for solving electromagnetic problems, one which makes use of a transmission line matrix (TLM). The propagation space is imagined to be filled with this matrix. The propagating fields and physical properties are then mapped onto the matrix. Mathematically, the procedures are identical with the traditional numerical methods; however, the interpretation and physical appeal of the transmission line matrix are far superior. Any change in the matrix has an immediate physical significance. What is also very important is that the matrix becomes a launching pad for many improvements in the analysis, using more modern notions of electromagnetic waves. Eventually, the purely mathematical techniques will probably give way to the transmission line matrix method.Major revisions occur in chapters IV and VII in this second edition. The revised chapters now present an up-to-date and concise treatment on plane wave correlations and decorrelations, and provide a revised formulation of simulation to solve transient electromagnetic problems. It also takes into account semiconductors with arbitrary dielectric constant, using much smaller cell size, and extending the range of applicability and improving accuracy.
Electromagnetic Compatibility
Author: David A. Weston
Publisher: CRC Press
ISBN: 1482299518
Category : Computers
Languages : en
Pages : 1182
Book Description
Offers a text useful for practicing nonspecialist engineers and those new to EMC Contains worked examples and applications of all equations Provides computer code and contains programs available for readers Covers certification EMC measurement techniques Includes a full chapter on system level EMC/EMI
Publisher: CRC Press
ISBN: 1482299518
Category : Computers
Languages : en
Pages : 1182
Book Description
Offers a text useful for practicing nonspecialist engineers and those new to EMC Contains worked examples and applications of all equations Provides computer code and contains programs available for readers Covers certification EMC measurement techniques Includes a full chapter on system level EMC/EMI
Electromagnetic Analysis Using Transmission Line Variables
Author: Maurice Weiner
Publisher: World Scientific Publishing Company
ISBN: 9789813225022
Category : Science
Languages : en
Pages : 654
Book Description
This latest edition continues the evolution toward the ultimate realization of a new technique for solving electromagnetic propagation problems. The technique combines the classical and intuitive use of a transmission line matrix (TLM) while striving for consistency with the guideposts demanded by quantum mechanics and the essential structure of electromagnetic theory. The matrix then becomes a useful vehicle for examining both coherent and noncoherent electromagnetic waves. The goal is a mathematical tool capable of solving problems related to the propagation of transient, high-speed, complex waveforms containing both symmetric and plane wave components. For such waveforms, standard classical electromagnetic theory is unable to provide a truly accurate solution since it does not properly account for the correlations among the various TLM cells. The correlations among neighboring TLM cells allow the cell waves to sense one another and to collectively participate as a coherent wave. For arbitrary signals, e.g., complex, high speed, highly non-uniform signals, the correlation model must be placed on a firmer footing to insure the proper correlation strength based on the close adherence to quantum mechanical principles. The purpose of the Third Edition is to thereby improve the correlation model, and incorporate the model into the simulations. The simulation results thus obtained show great promise in describing the full range of electromagnetic phenomena. Wave divergence and diffraction simulations, employing both composite and shorter range correlation models, have been incorporated. The models employ correlation coefficients which may be linked with quantum mechanical parameters, thus providing a deeper understanding of coherent wave fronts.
Publisher: World Scientific Publishing Company
ISBN: 9789813225022
Category : Science
Languages : en
Pages : 654
Book Description
This latest edition continues the evolution toward the ultimate realization of a new technique for solving electromagnetic propagation problems. The technique combines the classical and intuitive use of a transmission line matrix (TLM) while striving for consistency with the guideposts demanded by quantum mechanics and the essential structure of electromagnetic theory. The matrix then becomes a useful vehicle for examining both coherent and noncoherent electromagnetic waves. The goal is a mathematical tool capable of solving problems related to the propagation of transient, high-speed, complex waveforms containing both symmetric and plane wave components. For such waveforms, standard classical electromagnetic theory is unable to provide a truly accurate solution since it does not properly account for the correlations among the various TLM cells. The correlations among neighboring TLM cells allow the cell waves to sense one another and to collectively participate as a coherent wave. For arbitrary signals, e.g., complex, high speed, highly non-uniform signals, the correlation model must be placed on a firmer footing to insure the proper correlation strength based on the close adherence to quantum mechanical principles. The purpose of the Third Edition is to thereby improve the correlation model, and incorporate the model into the simulations. The simulation results thus obtained show great promise in describing the full range of electromagnetic phenomena. Wave divergence and diffraction simulations, employing both composite and shorter range correlation models, have been incorporated. The models employ correlation coefficients which may be linked with quantum mechanical parameters, thus providing a deeper understanding of coherent wave fronts.
CERN Courier
Author:
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 574
Book Description
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 574
Book Description
Numerical Techniques in Electromagnetics with MATLAB
Author: Matthew N.O. Sadiku
Publisher: CRC Press
ISBN: 1420063103
Category : Technology & Engineering
Languages : en
Pages : 601
Book Description
Despite the dramatic growth in the availability of powerful computer resources, the EM community lacks a comprehensive text on the computational techniques used to solve EM problems. The first edition of Numerical Techniques in Electromagnetics filled that gap and became the reference of choice for thousands of engineers, researchers, and students. This third edition of the bestselling text reflects the continuing increase in awareness and use of numerical techniques and incorporates advances and refinements made in recent years. Most notable among these are the improvements made to the standard algorithm for the finite-difference time-domain (FDTD) method and treatment of absorbing boundary conditions in FDTD, finite element, and transmission-line-matrix methods. The author also has added a chapter on the method of lines. Numerical Techniques in Electromagnetics with MATLAB®, Third Edition continues to teach readers how to pose, numerically analyze, and solve EM problems, to give them the ability to expand their problem-solving skills using a variety of methods, and to prepare them for research in electromagnetism. Now the Third Edition goes even further toward providing a comprehensive resource that addresses all of the most useful computation methods for EM problems and includes MATLAB code instead of FORTRAN.
Publisher: CRC Press
ISBN: 1420063103
Category : Technology & Engineering
Languages : en
Pages : 601
Book Description
Despite the dramatic growth in the availability of powerful computer resources, the EM community lacks a comprehensive text on the computational techniques used to solve EM problems. The first edition of Numerical Techniques in Electromagnetics filled that gap and became the reference of choice for thousands of engineers, researchers, and students. This third edition of the bestselling text reflects the continuing increase in awareness and use of numerical techniques and incorporates advances and refinements made in recent years. Most notable among these are the improvements made to the standard algorithm for the finite-difference time-domain (FDTD) method and treatment of absorbing boundary conditions in FDTD, finite element, and transmission-line-matrix methods. The author also has added a chapter on the method of lines. Numerical Techniques in Electromagnetics with MATLAB®, Third Edition continues to teach readers how to pose, numerically analyze, and solve EM problems, to give them the ability to expand their problem-solving skills using a variety of methods, and to prepare them for research in electromagnetism. Now the Third Edition goes even further toward providing a comprehensive resource that addresses all of the most useful computation methods for EM problems and includes MATLAB code instead of FORTRAN.
Analytical and Computational Methods in Electromagnetics
Author: Ramesh Garg
Publisher: Artech House
ISBN: 1596933860
Category : Electromagnetic waves
Languages : en
Pages : 528
Book Description
Achieve optimal microwave system performance by mastering the principles and methods underlying today's powerful computational tools and commercial software in electromagnetics. This authoritative resource offers you clear and complete explanation of this essential electromagnetics knowledge, providing you with the analytical background you need to understand such key approaches as MoM (method of moments), FDTD (Finite Difference Time Domain) and FEM (Finite Element Method), and Green's functions. This comprehensive book includes all math necessary to master the material. Moreover, it features numerous solved problems that help ensure your understanding of key concepts throughout the book.
Publisher: Artech House
ISBN: 1596933860
Category : Electromagnetic waves
Languages : en
Pages : 528
Book Description
Achieve optimal microwave system performance by mastering the principles and methods underlying today's powerful computational tools and commercial software in electromagnetics. This authoritative resource offers you clear and complete explanation of this essential electromagnetics knowledge, providing you with the analytical background you need to understand such key approaches as MoM (method of moments), FDTD (Finite Difference Time Domain) and FEM (Finite Element Method), and Green's functions. This comprehensive book includes all math necessary to master the material. Moreover, it features numerous solved problems that help ensure your understanding of key concepts throughout the book.
Transmission Lines
Author: Richard Collier
Publisher: Cambridge University Press
ISBN: 110731111X
Category : Technology & Engineering
Languages : en
Pages : 333
Book Description
This rigorous treatment of transmission lines presents all the essential concepts in a clear and straightforward manner. Key principles are demonstrated by numerous practical worked examples and illustrations, and complex mathematics is avoided throughout. Early chapters cover pulse propagation, sinusoidal waves and coupled lines, all set within the context of a simple lossless equivalent circuit. Later chapters then develop this basic model by demonstrating the derivation of circuit parameters, and the use of Maxwell's equations to extend this theory to major transmission lines. Finally, a discussion of photonic concepts and properties provides valuable insights into the fundamental physics underpinning transmission lines. Covering DC to optical frequencies, this accessible text is an invaluable resource for students, researchers and professionals in electrical, RF and microwave engineering.
Publisher: Cambridge University Press
ISBN: 110731111X
Category : Technology & Engineering
Languages : en
Pages : 333
Book Description
This rigorous treatment of transmission lines presents all the essential concepts in a clear and straightforward manner. Key principles are demonstrated by numerous practical worked examples and illustrations, and complex mathematics is avoided throughout. Early chapters cover pulse propagation, sinusoidal waves and coupled lines, all set within the context of a simple lossless equivalent circuit. Later chapters then develop this basic model by demonstrating the derivation of circuit parameters, and the use of Maxwell's equations to extend this theory to major transmission lines. Finally, a discussion of photonic concepts and properties provides valuable insights into the fundamental physics underpinning transmission lines. Covering DC to optical frequencies, this accessible text is an invaluable resource for students, researchers and professionals in electrical, RF and microwave engineering.
Fields and Waves in Communication Electronics
Author: Simon Ramo
Publisher: Wiley
ISBN: 9780471585510
Category : Science
Languages : en
Pages : 864
Book Description
This comprehensive revision begins with a review of static electric and magnetic fields, providing a wealth of results useful for static and time-dependent fields problems in which the size of the device is small compared with a wavelength. Some of the static results such as inductance of transmission lines calculations can be used for microwave frequencies. Familiarity with vector operations, including divergence and curl, are developed in context in the chapters on statics. Packed with useful derivations and applications.
Publisher: Wiley
ISBN: 9780471585510
Category : Science
Languages : en
Pages : 864
Book Description
This comprehensive revision begins with a review of static electric and magnetic fields, providing a wealth of results useful for static and time-dependent fields problems in which the size of the device is small compared with a wavelength. Some of the static results such as inductance of transmission lines calculations can be used for microwave frequencies. Familiarity with vector operations, including divergence and curl, are developed in context in the chapters on statics. Packed with useful derivations and applications.
Power Systems, Third Edition
Author: Leonard L. Grigsby
Publisher: CRC Press
ISBN: 1439856338
Category : Technology & Engineering
Languages : en
Pages : 571
Book Description
Power Systems, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) covers all aspects of power system protection, dynamics, stability, operation, and control. Under the editorial guidance of L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Andrew Hanson, Pritindra Chowdhuri, Gerry Sheblé, and Mark Nelms, this carefully crafted reference includes substantial new and revised contributions from worldwide leaders in the field. This content provides convenient access to overviews and detailed information on a diverse array of topics. Concepts covered include: Power system analysis and simulation Power system transients Power system planning (reliability) Power electronics Updates to nearly every chapter keep this book at the forefront of developments in modern power systems, reflecting international standards, practices, and technologies. New sections present developments in small-signal stability and power system oscillations, as well as power system stability controls and dynamic modeling of power systems. With five new and 10 fully revised chapters, the book supplies a high level of detail and, more importantly, a tutorial style of writing and use of photographs and graphics to help the reader understand the material. New chapters cover: Symmetrical Components for Power System Analysis Transient Recovery Voltage Engineering Principles of Electricity Pricing Business Essentials Power Electronics for Renewable Energy A volume in the Electric Power Engineering Handbook, Third Edition Other volumes in the set: K12642 Electric Power Generation, Transmission, and Distribution, Third Edition (ISBN: 9781439856284) K13917 Power System Stability and Control, Third Edition (9781439883204) K12650 Electric Power Substations Engineering, Third Edition (9781439856383) K12643 Electric Power Transformer Engineering, Third Edition (9781439856291)
Publisher: CRC Press
ISBN: 1439856338
Category : Technology & Engineering
Languages : en
Pages : 571
Book Description
Power Systems, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) covers all aspects of power system protection, dynamics, stability, operation, and control. Under the editorial guidance of L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Andrew Hanson, Pritindra Chowdhuri, Gerry Sheblé, and Mark Nelms, this carefully crafted reference includes substantial new and revised contributions from worldwide leaders in the field. This content provides convenient access to overviews and detailed information on a diverse array of topics. Concepts covered include: Power system analysis and simulation Power system transients Power system planning (reliability) Power electronics Updates to nearly every chapter keep this book at the forefront of developments in modern power systems, reflecting international standards, practices, and technologies. New sections present developments in small-signal stability and power system oscillations, as well as power system stability controls and dynamic modeling of power systems. With five new and 10 fully revised chapters, the book supplies a high level of detail and, more importantly, a tutorial style of writing and use of photographs and graphics to help the reader understand the material. New chapters cover: Symmetrical Components for Power System Analysis Transient Recovery Voltage Engineering Principles of Electricity Pricing Business Essentials Power Electronics for Renewable Energy A volume in the Electric Power Engineering Handbook, Third Edition Other volumes in the set: K12642 Electric Power Generation, Transmission, and Distribution, Third Edition (ISBN: 9781439856284) K13917 Power System Stability and Control, Third Edition (9781439883204) K12650 Electric Power Substations Engineering, Third Edition (9781439856383) K12643 Electric Power Transformer Engineering, Third Edition (9781439856291)