Effects of Water Stress and Salinity on Contrasting Wheat Genotypes

Effects of Water Stress and Salinity on Contrasting Wheat Genotypes PDF Author: Abdul Nabi Mallah
Publisher:
ISBN:
Category :
Languages : en
Pages : 602

Get Book Here

Book Description

Effects of Water Stress and Salinity on Contrasting Wheat Genotypes

Effects of Water Stress and Salinity on Contrasting Wheat Genotypes PDF Author: Abdul Nabi Mallah
Publisher:
ISBN:
Category :
Languages : en
Pages : 602

Get Book Here

Book Description


Salinity and Water Stress

Salinity and Water Stress PDF Author: M. Ashraf
Publisher: Springer Science & Business Media
ISBN: 140209065X
Category : Science
Languages : en
Pages : 241

Get Book Here

Book Description
Salinity and water stress limit crop productivity worldwide and generate substantial economic losses each year, yet innovative research on crop and natural resource management can reveal cost-effective ways in which farmers can increase both their productivity and their income. Presenting recent research findings on salt stress, water stress and stress-adapted plants, this book offers insights into new strategies for increasing the efficiency of crops under stressful environments. The strategies are based on conventional breeding and advanced molecular techniques used by plant physiologists, and are discussed using specific case studies to illustrate their potential. The book emphasizes the effects of environmental factors on specific stages of plant development, and discusses the role of plant growth regulators, nutrients, osmoprotectants and antioxidants in counteracting their adverse affects. Synthesising updated information on mechansisms of stress tolerance at cell, tissue and whole-plant level, this book provides a useful reference text for post graduate students and researchers involved in the fields of stress physiology and plant physiology in general, with additional readership amongst researchers in horticulture, agronomy, crop science, conservation, environmental management and ecological restoration.

Effects of Salinity and High Temperature Stress on Winter Wheat Genotypes

Effects of Salinity and High Temperature Stress on Winter Wheat Genotypes PDF Author: Amal Faraj Ahmed Ehtaiwesh
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Increased ambient temperature and soil salinity seriously affect the productivity of wheat (Triticum aestivum L.) which is an important cereal second to rice as the main human food crop. However, wheat plant is most susceptible to high temperatures and salinity at booting and flowering stages. Several studies have documented the effects of individual stress like salinity and high temperature stress on wheat, nonetheless little is known about effects of combined salinity and high temperature at critical growth stages. Therefore, the objectives of this research were (i) to screen winter wheat germplasm for salinity tolerance at the germination stages and to determine seedling growth traits associated with salinity tolerance, (ii) to evaluate the independent and combined effects of high temperature and salinity on winter wheat genotypes at the booting stages through growth, physiological, biochemical, and yield traits, and (iii) to evaluate the independent and combined effects of high temperature and salinity on winter wheat genotypes at the flowering stages through growth, physiological, biochemical, and yield traits. In the first experiment, 292 winter wheat genotypes (winter wheat germplasm) was screened for salinity stress at germination stage under controlled environments. The seeds were subjected to three levels of salinity, 0, 60, and 120 mM NaCl to quantify the effects of salinity on seed germination and seedling growth. In the second experiment, controlled environment study was conducted to quantity the independent and combined high temperature and salinity stress effects on growth, physiological, biochemical, and yield traits of twelve winter wheat genotypes during booting stage. Plants were grown at 20/15 °C (daytime maximum/nighttime minimum) temperature with 16 h photoperiod. At booting stages, the plants were exposed to optimum (20/15 °C) or high temperature (35/20 °C) and without (0 mM NaCl) and with (60, and 120 mM) NaCl. In the third experiment, plants were exposed to optimum or high temperature and with and without NaCl levels at flowering stages. The temperature regime and salinity levels were same as experiment II. The duration of stress was 10 d and after the stress period the plants were brought to optimum temperature and irrigated with normal water (0 mM NaCl). The results indicated that, at 120 mM NaCl, the final germination percentage was decreased and the mean daily germination was delayed. Irrespective of the genotype, salinity stress significantly decreased the shoot and root length; seedling dry matter production, and seedling vigor. Based on the seedling vigor index, the genotype GAGE, OK04507, MTS0531, TASCOSA, ENDURANCE and GUYMON, were found to be most tolerant and CO04W320, 2174-05, CARSON, OK1070275, TX02A0252 and TX04M410211 were the most susceptible to salinity at germination stage. Combined stresses of high temperature and salinity decreased photosynthetic rate and grain yields. Based on grain yield, the genotype TASCOSA was found to be most tolerant (64 % decrease) to combined stresses, and AVALANCHE was the most susceptible to combined stresses (75 % decrease) at booting stages. Similarly, at flowering stage, TX04M410211 had greater tolerance to combined stresses (65 % decline) as compared to GAGE (83 % decline). In both experiments, tolerance was associated with higher spikelet number and seed set. In conclusion, there is genetic variability among winter wheat genotypes that can be used in breeding programs to improve winter wheat yield under combined high temperature and salinity stress conditions.

Plant-Environment Interaction

Plant-Environment Interaction PDF Author: Mohamed Mahgoub Azooz
Publisher: John Wiley & Sons
ISBN: 1119081025
Category : Science
Languages : en
Pages : 361

Get Book Here

Book Description
The increase in global population, urbanization and industrialization is resulting in the conversion of cultivated land into wasteland. Providing food from these limited resources to an ever-increasing population is one of the biggest challenges that present agriculturalists and plant scientists are facing. Environmental stresses make this situation even graver. Plants on which mankind is directly or indirectly dependent exhibit various mechanisms for their survival. Adaptability of the plants to changing environment is a matter of concern for plant biologists trying to reach the goal of food security. Despite the induction of several tolerance mechanisms, sensitive plants often fail to withstand these environmental extremes. Using new technological approaches has become essential and imperative. Plant-Environment Interaction: Responses and Approaches to Mitigate Stress throws light on the changing environment and the sustainability of plants under these conditions. It contains the most up-to-date research and comprehensive detailed discussions in plant physiology, climate change, agronomy and forestry, sometimes from a molecular point of view, to convey in-depth understanding of the effects of environmental stress in plants, their responses to the environment, how to mitigate the negative effects and improve yield under stress. This edited volume is written by expert plant biologists from around the world, providing invaluable knowledge to graduate and undergraduate students in plant biochemistry, food chemistry, plant physiology, molecular biology, plant biotechnology, and environmental sciences. This book updates scientists and researchers with the very latest information and sustainable methods used for stress tolerance, which will also be of considerable interest to plant based companies and institutions concerned with the campaign of food security.

Response of Crops to Limited Water

Response of Crops to Limited Water PDF Author: Lajpat Ahuja
Publisher: ASA-CSSA-SSSA
ISBN: 9780891181675
Category : Science
Languages : en
Pages : 456

Get Book Here

Book Description
Water stress and heat stress are considered to be two primary factors that limit crop production in many parts of the world. Global warming appears to be increasing the water requirements of plants. Understanding the impact of water deficit on plant physiological processes and efficient water management are of great concern in maintaining food production to meet ever increasing world food demand. The book addresses various climatic soil and plant factors that contribute to the water use efficiency in plants subjected to water stress. It covers all issues related to soil, plant and climatic factors that contribute to the crop responses to water stress. The books advances the knowledge in improving and sustaining crop yields in ever increasing unpredictable climatic fluctuations This book uses crop simulation models for response of crops to limited water under various management and climatic conditions.

Abiotic Stress Response in Plants

Abiotic Stress Response in Plants PDF Author: Arun Shanker
Publisher: BoD – Books on Demand
ISBN: 9533076720
Category : Science
Languages : en
Pages : 362

Get Book Here

Book Description
Plants, unlike animals, are sessile. This demands that adverse changes in their environment are quickly recognized, distinguished and responded to with suitable reactions. Drought, heat, cold and salinity are among the major abiotic stresses that adversely affect plant growth and productivity. In general, abiotic stress often causes a series of morphological, physiological, biochemical and molecular changes that unfavorably affect plant growth, development and productivity. Drought, salinity, extreme temperatures (cold and heat) and oxidative stress are often interrelated; these conditions singularly or in combination induce cellular damage. To cope with abiotic stresses, of paramount significance is to understand plant responses to abiotic stresses that disturb the homeostatic equilibrium at cellular and molecular level in order to identify a common mechanism for multiple stress tolerance. This multi authored edited compilation attempts to put forth an all-inclusive biochemical and molecular picture in a systems approach wherein mechanism and adaptation aspects of abiotic stress are dealt with. The chief objective of the book hence is to deliver state of the art information for comprehending the effects of abiotic stress in plants at the cellular level.

Salinity: Environment — Plants — Molecules

Salinity: Environment — Plants — Molecules PDF Author: André Läuchli
Publisher: Springer Science & Business Media
ISBN: 0306481553
Category : Science
Languages : en
Pages : 551

Get Book Here

Book Description
In biology, the very big global and thevery small molecular issues currently appear to be in the limelight ofpublic interest and research funding policies. They are in danger of drifting apart from each other. They apply very coarse and very fine scaling, respectively, but coherence is lost when the various intermediate levels of different scales are neglected. Regarding SALINITY we are clearly dealing with a global problem, which due to progressing salinization of arable land is of vital interest for society. Explanations and basic understanding as well as solutions and remedies may finally lie at the molecular level. It is a general approach in science to look for understanding of any system under study at the next finer (or "lower") level of scaling. This in itself shows that we need a whole ladder of levels with increasingly finer steps from the global impact to the molecular bases of SALINITY relations. It is in this vein that the 22 chapters of this book aim at providing an integrated view of SALINITY.

Prospects for Saline Agriculture

Prospects for Saline Agriculture PDF Author: R. Ahmad
Publisher: Springer Science & Business Media
ISBN: 9401700672
Category : Science
Languages : en
Pages : 453

Get Book Here

Book Description
Saline land is a resource capable of significant production. Recent advances in research in breeding for salt tolerance in wheat, biotechnology in rice, and selection and rehabilitation of salt-tolerant plants are of economic importance in arid/saline conditions. This book gives some practical approaches for saline agriculture and afforestation, and describes examples of cultivating salt-tolerant/halophytic plants for commercial interest on salt-affected land or with highly salinized water in Australia, China, Central Asia, Egypt, Pakistan, and Russia. It also explores the possibilities of arid/saline agriculture and afforestation in UAE.

Roots

Roots PDF Author: Jun J. Abe
Publisher: Springer Science & Business Media
ISBN: 9401729239
Category : Science
Languages : en
Pages : 444

Get Book Here

Book Description
The root is the organ that functions as the interface between the plant and the earth environment. Many human management practices involving crops, forests and natural vegetation also affect plant growth through the soil and roots. Understanding the morphology and function of roots from the cellular level to the level of the whole root system is required for both plant production and environmental protection. This book is at the forefront of plant root science (rhizology), catering to professional plant scientists and graduate students. It covers root development, stress physiology, ecology, and associations with microorganisms. The chapters are selected papers originally presented at the 6th Symposium of the International Society of Root Research, where plant biologists, ecologists, soil microbiologists, crop scientists, forestry scientists, and environmental scientists, among others, gathered to discuss current research results and to establish rhizology as a newly integrated research area.

Physiological Characterization and Differential Gene Expression Analysis in Contrasting Wheat Genotypes Under Water Deficit Stress

Physiological Characterization and Differential Gene Expression Analysis in Contrasting Wheat Genotypes Under Water Deficit Stress PDF Author: Priyanka Mathur
Publisher:
ISBN:
Category :
Languages : en
Pages : 93

Get Book Here

Book Description