Effects of Urbanization on Stream Ecosystems in the Willamette River Basin and Surrounding Area, Oregon and Washington

Effects of Urbanization on Stream Ecosystems in the Willamette River Basin and Surrounding Area, Oregon and Washington PDF Author:
Publisher:
ISBN:
Category : Stream ecology
Languages : en
Pages : 62

Get Book Here

Book Description


Effects of Urbanization on Stream Ecosystems in the Williamette River Basin and Surrounding Area, Oregon and Washington

Effects of Urbanization on Stream Ecosystems in the Williamette River Basin and Surrounding Area, Oregon and Washington PDF Author:
Publisher:
ISBN:
Category : Stream ecology
Languages : en
Pages : 62

Get Book Here

Book Description


Wild Salmonids in the Urbanizing Pacific Northwest

Wild Salmonids in the Urbanizing Pacific Northwest PDF Author: J. Alan Yeakley
Publisher: Springer Science & Business Media
ISBN: 1461488184
Category : Science
Languages : en
Pages : 270

Get Book Here

Book Description
Wild salmon, trout, char, grayling, and whitefish (collectively salmonids) have been a significant local food and cultural resource for Pacific Northwest peoples for millennia. The location, size, and distribution of urban areas along streams, rivers, estuaries, and coasts directly and indirectly alter and degrade wild salmonid populations and their habitats. Although urban and exurban areas typically cover a smaller fraction of the landscape than other land uses combined, they have profound consequences for local ecosystems, aquatic and terrestrial populations, and water quality and quantity.​

Geomorphic setting, aquatic habitat, and water-quality conditions of the Molalla River, Oregon, 2009–10

Geomorphic setting, aquatic habitat, and water-quality conditions of the Molalla River, Oregon, 2009–10 PDF Author: Kurt D. Carpenter
Publisher: U.S. Department of the Interior, U.S. Geological Survey
ISBN:
Category :
Languages : en
Pages : 90

Get Book Here

Book Description
This report presents results from a 2009–10 assessment of the lower half of the Molalla River. The report describes the geomorphic setting and processes governing the physical layout of the river channel and evaluates changes in river geometry over the past several decades using analyses of aerial imagery and other quantitative techniques. The peak-flow hydrology in the Molalla River has been characterized by a series of large floods during the 1960s and 1970s, a period of relatively small peak flows from 1975 to 1995, and a relative increase in severity of events in the past 15 years. Although incomplete, the gaging record for the early 20th century showed only modest high flows. The flood chronology since 1960 has affected the geomorphology of the river corridor, principally by increasing the active-channel width. The area affected by channel migration in the late 20th century, however, was reduced by the construction of revetments along the river corridor which acted to contain channel movement. The study area along the Molalla River was divided into six unique geomorphic reaches. The upper-most reach, designated GR6, is a narrow, bedrock-controlled reach with ample shade and large riffles. The next downstream reach, GR5, is also largely bedrock controlled but has a wider flood plain and active channel-migration zone. The longest geomorphic reach, GR4, has a wide channel-migration zone with many strategically placed revetments that work in concert with bounding bedrock to the northeast to suppress overall channel movement. In contrast, GR3 is a wide, active reach that responds more dramatically to flood and non-flood periods than the other geomorphic reaches. The anthropogenically confined GR2, adjacent the City of Canby, has relatively little historical channel movement and relatively few gravel bars. Finally, the farthest downstream reach, GR1, is an actively meandering reach that most closely resembles its pre-development state. Detailed analysis of aerial imagery from 1994, 2000, 2005, and 2009 showed that channel-migration activity and active-channel widths were greater in GR3 than in any other geomorphic reach and were related directly to the timing and magnitude of high flows. Similarly, the revegetation of exposed bars is significant in GR3 and elsewhere when large floods do not occur. A qualitative analysis of older aerial imagery dating back to 1936 showed that the recent channel-migration activity in GR3 is no greater than it was historically. Channel-migration activity in GR2, GR4, and GR5 was reduced relative to historical rates as a consequence of the construction of revetments and encroachment along the river corridor. Analyses of the longitudinal water-surface profile first suggested a possible accumulation of alluvium in GR3, but subsequent analysis of the shape of the longitudinal profile juxtaposed against bedrock outcrops in the river channel showed that the river is largely flowing over a shelf of bedrock and not filling with sediment. Water-quality, benthic algae, and benthic invertebrate conditions were examined during summer low-flow periods to determine the overall health of the river and to provide possible insights into the physical or chemical influences on diatom assemblages. A wetter than normal spring in 2010 resulted in higher-than-normal flows in July and August that may have delayed the algal growing season and limited the accrual of algal biomass in the river. Longitudinal changes in water quality, including downstream increases in water temperature and specific conductance, were observed in the Molalla River during August and September. Such patterns are typical of many rivers receiving inputs from anthropogenic sources in the flood plain, including agricultural and rural residential lands (Milk and Gribble Creek basins) as well as some urban runoff in the lower river. Nutrient concentrations in the Molalla River were generally low at most sampling sites but did increase at the Goods Bridge and Knights Bridge sites, presumably from a greater influence from anthropogenic sources that enter the river from tributaries, agricultural irrigation returns, or groundwater in the lower basin. Nitrate concentrations at Glen Avon and Knights Bridges exceeded their respective reference values for streams in the Cascade Range and Willamette Valley. Although the nitrate-nitrogen concentrations were somewhat elevated, phosphorus, in contrast, is relatively much less abundant in the Molalla River. N:P ratios for soluble, biologically available nitrogen and phosphorus were lower in the upper middle reaches (less than 5), but the absolute concentrations of orthophosphorus (0.010 milligrams per liter or less in July) suggest that attached periphytic algae in the river may be limited by phosphorus concentrations or some other factor, but probably not by nitrogen. The Molalla River has lower phosphorus concentrations than other rivers draining the Cascade Range because the phosphate-rich rocks of the Oregon High Cascades, prevalent in other drainages, are not present in the Molalla River basin, which is wholly contained within the Western Cascade Range geologic province. The 2010 algal growing season was delayed due to an unusually cold and wet spring, which produced streamflows 12–18 percent higher than normal in July and August and could have limited the accrual of periphyton biomass in the river. Nevertheless, a healthy biofilm of diatoms and other types of algae developed in the shallow riffle habitats during July, covering the entire stream channel in some areas. Generally, riffle habitats appeared healthy, with little sediment and low substrate embeddedness (that is, the degree of infilling of fine sediments around gravels and cobbles) was less than 5 percent at all sites except the Knights Bridge site, where embeddedness was about 10 to 25 percent higher. Algal biomass levels in July were moderate, ranging from 30 to 55 mg of chlorophyll-a per square meter, and the high densities of benthic macroinvertebrate grazers in the riffles suggests that the accumulation of algae (biomass levels) may have been limited by these herbivores. In August, however, a benthic bloom of filamentous green algae (Cladophora glomerata) increased algal biomass in the lower river, with nuisance levels at the Knights Bridge site. Higher nutrient concentrations (both nitrate and orthophosphate) combined with fewer invertebrate grazers (mostly snails) likely contributed to the higher biomass at this site. Long filaments of Cladophora also were observed in the area near the Canby drinking-water treatment plant, where in previous years, algae have clogged water intakes during periods of senescence when algae detach from the river bed and enter the intake. In 2010, algal biomass conditions were not as severe and the intakes were not affected. Distinct fluctuations in concentrations of dissolved oxygen and in pH levels from algal photosynthesis were observed at all sites sampled, with the largest diel changes and highest daily maximum values occurring at the two most downstream sites, particularly at Knights Bridge. Although some relatively high pH values were measured (as much as 8.4 units), none of the pH measurements exceeded State of Oregon water-quality standards, even in the afternoon hours on warm sunny days. Dissolved oxygen concentrations at Goods Bridge and Knights Bridge did not meet the 8 milligrams per liter criteria in the early morning hours, but compliance with the standards is only evaluated with 30-day average minimum values, which were not available. Relative to the salmon spawning criteria, for which the data collected during this study applies only to the Glen Avon Bridge site in September, water temperature, pH, and concentrations of dissolved oxygen all met the state standard in effect. Thirty-three species of algae were identified in the Molalla River, including fast growing small diatoms and very large stalked diatoms, filamentous green and blue-greens, and a few planktonic forms of green and blue-green algae that may have washed into the river from an upstream pond. The occurrence of high-biomass forming types of algae in the river, including filamentous greens such as Cladophora and large stalked diatoms such as Cymbella and Gomphoneis, could be a concern for fish populations because of the potential for smothering fish redds or by impacting benthic invertebrate populations that feed fish. Together, most of these algae (and overall algal biomass) are typical of generally high quality waters with little organic pollution, high concentrations of dissolved oxygen, and alkaline pH. The relatively high percentage of eutrophic taxa does, however, suggest some degree of nutrient enrichment in the river, despite the relatively low concentrations observed at most sites. Uptake of dissolved nutrients by algae, and inputs of additional nutrients, complicates interpretations regarding nutrient concentrations in the river, especially because samples were collected during summer growing season. Although the bulk of the diatom species generally were similar among at least the four upstream sampling sites, the multivariate ordination suggests a downstream trend in assemblage structure from the Glen Avon Bridge site to the Highway 213 Bridge. The next downstream site, at Goods Bridge, near the downstream end of the alluvial GR3 reach, however, plotted closer to the most upstream site at Glen Avon Bridge, which indicates a change in assemblage structure. The algal indicator species analysis showed a change in species composition at the Goods Bridge site, including decreases in eutrophic diatoms, increases in the relative abundance of oligotrophic diatoms, and an increase in diatoms sensitive to organic pollution that suggests an improvement in water quality conditions. Although this may be related to the enhanced water exchange into and out of the streambed in the alluvial reach, and such hyporheic activity could work to clean the river of organic compounds and nutrients, small decreases in water quality (lower concentration of dissolved oxygen, and higher conductance and nutrient concentrations) were observed between the Highway 213 and Goods Bridge sites. The multivariate analysis relating the diatom species composition data to the geomorphic and water-quality variables indicated that the presence of local gravel bars, bedrock, exposure to the sun (open canopy), and pH had a significant role in shaping the diatom assemblage structure. Although there was a high percentage of similarity among samples, many of these factors have the potential to affect diatoms and other algae through various interrelated mechanisms that relate to channel mobility and associated effects on light available for algal photosynthesis, for example, and other potential factors. Although only qualitatively addressed for this study, benthic macroinvertebrates, including mayflies, caddisflies, and stoneflies, were abundant in the Molalla River and indicate a high degree of secondary production in the riffles throughout the study reach. Snails, another voracious grazer of algae, also were relatively abundant at the Goods Bridge and Knights Bridge sites. Additionally, large numbers of the large caddisfly larvae Dicosmoecus were observed throughout most of the lower river in a range of depths and habitats. The large densities of these grazers, combined with the moderate level of algal biomass, suggest that invertebrate grazers could have limited the accrual of algae during summer 2010, an assertion that could be evaluated with further study. In northern California’s Eel River, high abundances of Dicosmoecus were detected in summers following winters that lacked bankfull flow, as was the case for the Molalla River in water year 2010. The lack of disturbance might explain the high abundance of these herbivores in the Molalla River. The information from this study can be used to adapt management strategies for the Molalla River and its flood plain. These strategies may assist in developing and maintaining a healthy river environment that includes high-quality water for aquatic life and human consumption.

Effects of urban development on stream ecosystems in nine metropolitan study areas across the United States

Effects of urban development on stream ecosystems in nine metropolitan study areas across the United States PDF Author: James F. Coles
Publisher:
ISBN:
Category : Stream ecology
Languages : en
Pages : 138

Get Book Here

Book Description


Channel Improvements, Columbia and Lower Willamette River Federal Navigation Channel, (OR,WA)

Channel Improvements, Columbia and Lower Willamette River Federal Navigation Channel, (OR,WA) PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 498

Get Book Here

Book Description


Linkages Among Land Use, Riparian Zones, and Uptake and Transformation of Nitrate in Stream Ecosystems

Linkages Among Land Use, Riparian Zones, and Uptake and Transformation of Nitrate in Stream Ecosystems PDF Author: Daniel J. Sobota
Publisher:
ISBN:
Category : Land use
Languages : en
Pages : 302

Get Book Here

Book Description
Land use alters the physical and biological structure of stream ecosystems and potentially alters their capacity to process nitrogen (N), an essential nutrient that has nearly doubled in abundance on the biosphere during the past century from human activities. In this dissertation, I quantified uptake and transformation of nitrate (NO3 ̄) in small (_ third-order) streams and related these dynamics to aquatic ecosystem processes, including primary production and organic matter decomposition, and attributes of riparian zone structure and vegetation composition. I also analyze patterns of stream NO3 ̄ processing among three classes of adjacent land use practices (forest, agriculture, and urban). In Chapter 2, ambient rates of NO3 ̄ uptake and transformation were measured with 24-hr releases of 15N-labeled NO3 ̄ in nine stream reaches in the Willamette River Basin of western Oregon during summer low flow (July - August). Three reaches each were surrounded by forested, agricultural or urban land use. After standardizing reaches to a 500-m length, I estimated that _20% of tracer 15NO3 ̄ was taken up by detrital and autotrophic biomass in eight of the reaches. In the remaining stream, which had the largest discharge (120 L s−1) in this study, only 8% of the tracer was taken up in 500 m. Tracer labeling of detritus and autotrophic biomass and a positive correlation (r[subscript s]=0.81) of uptake with gross primary production suggested that assimilation was the dominant uptake pathway in all streams. Denitrification, dissimilatory reduction of NO3 ̄ to N2 and N2O gases, composed 3 - 15% of 15N budgets over 500 m in two agricultural reaches and in one urban reach dominated by large slowly-turning over pools. However, denitrification was below detection limit at five of the remaining six reaches. This study showed that pathways of stream NO3 ̄ uptake and transformation differed among streams adjacent to three diverse land use practices. In Chapter 3, I quantified effects of substrate nutritional quality and inorganic N loading (as NO3 ̄) on wood breakdown in western Oregon streams. Short-term ( 2 month) breakdown rates of wood substrates of high nutritional quality (Alnus rubra; red alder) and low quality (Pseudotsuga menziesii; Douglas-fir) increased with dissolved inorganic N (11 to 111 [mu]g N L−1 ) across six streams (p = 0.04), but this relationship was confounded with concurrent increases in stream temperature. Across the six streams, breakdown rates of red alder were consistently double that of Douglas-fir. A longer-term study (313 d) in a coniferous forest Oregon Cascades stream suggested effects of increased NO3 ̄ availability on wood breakdown became evident after cellulose and lignin components of woody tissues began to decompose ( 4 months of incubation). Average breakdown rates substrates enriched with NO3 ̄ were higher than those incubated in low NO3 ̄ conditions, but this difference was not statistically significant. However, microbial biofilm respiration rates and activity of two enzymes involved in the breakdown of woody tissues (beta-glucosidase and phenol oxidase) on red alder had significantly greater responses to NO3 ̄ additions than on Douglas-fir after four months of incubation in the stream. Results suggest that increases in N loading to streams bordered by riparian forests with fast-growing deciduous species could increase wood breakdown rates. On the other hand, increases to N loading may have a smaller effect on wood breakdown in streams surrounded by long-lived coniferous species. In Chapter 4, I quantified patterns of stream channel and riparian zone attributes for 72 streams equally distributed among forests or grasslands, agriculture, and urban land use practices on from eight major North American regions. I also related these patterns to stream NO3 ̄ uptake determined from 15NO3 ̄ tracer releases. Agricultural and urban streams had a simplified channel structure (low width-to-depth ratio, low variation in stream depth, and high stream banks) relative to forest or grassland streams. Agricultural and urban streams also had a significantly smaller median sediment diameter (D50) and fraction of benthic sediments composed by silt than in forest and grassland streams. Overstory canopy cover over the channel and in the riparian zone was lowest for agricultural streams but did not significantly differ between forest or grassland streams and urban streams. A multiple regression model showed that stream NO3 ̄ uptake decreased with increasing canopy cover, but also increased with abundance of silt in benthic sediments. This suggested NO3 ̄ uptake was strongly influenced by in-stream primary production and extent of anoxic environments (conducive for denitrification). A multiple regression model for fractional NO3 ̄ uptake by denitrification further supported the concept that extent of anoxic environments influenced overall NO3 ̄ uptake in streams. Through these studies, I demonstrated that attributes of riparian zone structure and vegetation composition can strongly influence NO3 ̄ uptake and transformation in stream ecosystems by controlling organic matter dynamics. I also have shown that riparian zone attributes vary significantly among three different land use types (forest or grassland, agriculture, and urban). Similarly, pathways of NO3 ̄ uptake and effects of NO3 ̄ on wood breakdown did or were expected to differ among different land use types / riparian zone characteristics. However, other factors besides riparian attributes, particularly level of nutrient loading, alteration of stream channel physical structure, and basin position of the stream, must be considered in concert when evaluating effects of land use on riparian zone and stream ecosystem structure and function.

Willamette River Basin

Willamette River Basin PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 54

Get Book Here

Book Description


Estimates of Ground-water Recharge, Base Flow, and Stream Reach Gains and Losses in the Willamette River Basin, Oregon

Estimates of Ground-water Recharge, Base Flow, and Stream Reach Gains and Losses in the Willamette River Basin, Oregon PDF Author: Karl K. Lee
Publisher:
ISBN:
Category : Groundwater flow
Languages : en
Pages : 68

Get Book Here

Book Description


Riparian Areas

Riparian Areas PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309082951
Category : Science
Languages : en
Pages : 449

Get Book Here

Book Description
The Clean Water Act (CWA) requires that wetlands be protected from degradation because of their important ecological functions including maintenance of high water quality and provision of fish and wildlife habitat. However, this protection generally does not encompass riparian areasâ€"the lands bordering rivers and lakesâ€"even though they often provide the same functions as wetlands. Growing recognition of the similarities in wetland and riparian area functioning and the differences in their legal protection led the NRC in 1999 to undertake a study of riparian areas, which has culminated in Riparian Areas: Functioning and Strategies for Management. The report is intended to heighten awareness of riparian areas commensurate with their ecological and societal values. The primary conclusion is that, because riparian areas perform a disproportionate number of biological and physical functions on a unit area basis, restoration of riparian functions along America's waterbodies should be a national goal.