Effects of Aerosols on Deep Convective Cumulus Clouds

Effects of Aerosols on Deep Convective Cumulus Clouds PDF Author: Jiwen Fan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This work investigates the effects of anthropogenic aerosols on deep convective clouds and the associated radiative forcing in the Houston area. The Goddard Cumulus Ensemble model (GCE) coupled with a spectral-bin microphysics is employed to investigate the aerosol effects on clouds and precipitation. First, aerosol indirect effects on clouds are separately investigated under different aerosol compositions, concentrations and size distributions. Then, an updated GCE model coupled with the radiative transfer and land surface processes is employed to investigate the aerosol radiative effects on deep convective clouds. The cloud microphysical and macrophysical properties change considerably with the aerosol properties. With varying the aerosol composition from only (NH4)2SO4, (NH4)2SO4 with soluble organics, to (NH4)2SO4 with slightly soluble organics, the number of activated aerosols decreases gradually, leading to a decrease in the cloud droplet number concentration (CDNC) and an increase in the droplet size. Ice processes are more sensitive to the changes of aerosol chemical properties than the warm rain processes. The most noticeable effect of increasing aerosol number concentrations is an increase of CDNC and cloud water content but a decrease in droplet size. It is indicated that the aerosol indirect effect on deep convection is more pronounced in relatively clean air than in heavily polluted air. The aerosol effects on clouds are strongly dependent on RH: the effect is very significant in humid air. Aerosol radiative effects (ARE) on clouds are very pronounced for mid-visible single-scattering albedo (SSA) of 0.85. Relative to the case without the ARE, cloud fraction and optical depth decrease by about 18% and 20%, respectively. The daytime-mean direct forcing is about 2.2 W m-2 at the TOA and -17.4 W m-2 at the surface. The semi-direct forcing is positive, about 10 and 11.2 W m-2 at the TOA and surface, respectively. Aerosol direct and semi-direct effects are very sensitive to SSA. The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable atmosphere due to enhanced surface cooling and atmospheric heating.

Effects of Aerosols on Deep Convective Cumulus Clouds

Effects of Aerosols on Deep Convective Cumulus Clouds PDF Author: Jiwen Fan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This work investigates the effects of anthropogenic aerosols on deep convective clouds and the associated radiative forcing in the Houston area. The Goddard Cumulus Ensemble model (GCE) coupled with a spectral-bin microphysics is employed to investigate the aerosol effects on clouds and precipitation. First, aerosol indirect effects on clouds are separately investigated under different aerosol compositions, concentrations and size distributions. Then, an updated GCE model coupled with the radiative transfer and land surface processes is employed to investigate the aerosol radiative effects on deep convective clouds. The cloud microphysical and macrophysical properties change considerably with the aerosol properties. With varying the aerosol composition from only (NH4)2SO4, (NH4)2SO4 with soluble organics, to (NH4)2SO4 with slightly soluble organics, the number of activated aerosols decreases gradually, leading to a decrease in the cloud droplet number concentration (CDNC) and an increase in the droplet size. Ice processes are more sensitive to the changes of aerosol chemical properties than the warm rain processes. The most noticeable effect of increasing aerosol number concentrations is an increase of CDNC and cloud water content but a decrease in droplet size. It is indicated that the aerosol indirect effect on deep convection is more pronounced in relatively clean air than in heavily polluted air. The aerosol effects on clouds are strongly dependent on RH: the effect is very significant in humid air. Aerosol radiative effects (ARE) on clouds are very pronounced for mid-visible single-scattering albedo (SSA) of 0.85. Relative to the case without the ARE, cloud fraction and optical depth decrease by about 18% and 20%, respectively. The daytime-mean direct forcing is about 2.2 W m-2 at the TOA and -17.4 W m-2 at the surface. The semi-direct forcing is positive, about 10 and 11.2 W m-2 at the TOA and surface, respectively. Aerosol direct and semi-direct effects are very sensitive to SSA. The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable atmosphere due to enhanced surface cooling and atmospheric heating.

Mixed-Phase Clouds

Mixed-Phase Clouds PDF Author: Constantin Andronache
Publisher: Elsevier
ISBN: 012810550X
Category : Science
Languages : en
Pages : 302

Get Book Here

Book Description
Mixed-Phase Clouds: Observations and Modeling presents advanced research topics on mixed-phase clouds. As the societal impacts of extreme weather and its forecasting grow, there is a continuous need to refine atmospheric observations, techniques and numerical models. Understanding the role of clouds in the atmosphere is increasingly vital for current applications, such as prediction and prevention of aircraft icing, weather modification, and the assessment of the effects of cloud phase partition in climate models. This book provides the essential information needed to address these problems with a focus on current observations, simulations and applications. - Provides in-depth knowledge and simulation of mixed-phase clouds over many regions of Earth, explaining their role in weather and climate - Features current research examples and case studies, including those on advanced research methods from authors with experience in both academia and the industry - Discusses the latest advances in this subject area, providing the reader with access to best practices for remote sensing and numerical modeling

Aerosol Pollution Impact on Precipitation

Aerosol Pollution Impact on Precipitation PDF Author: Zev Levin
Publisher: Springer Science & Business Media
ISBN: 1402086903
Category : Science
Languages : en
Pages : 399

Get Book Here

Book Description
Life on Earth is critically dependent upon the continuous cycling of water between oceans, continents and the atmosphere. Precipitation (including rain, snow, and hail) is the primary mechanism for transporting water from the atmosphere back to the Earth’s surface. It is also the key physical process that links aspects of climate, weather, and the global hydrological cycle. Changes in precipitation regimes and the frequency of extreme weather events, such as floods, droughts, severe ice/snow storms, monsoon fluctuations and hurricanes are of great potential importance to life on the planet. One of the factors that could contribute to precipitation modification is aerosol pollution from various sources such as urban air pollution and biomass burning. Natural and anthropogenic changes in atmospheric aerosols might have important implications for precipitation by influencing the hydrological cycle, which in turn could feed back to climate changes. From an Earth Science perspective, a key question is how changes expected in climate will translate into changes in the hydrological cycle, and what trends may be expected in the future. We require a much better understanding and hence predictive capability of the moisture and energy storages and exchanges among the Earth’s atmosphere, oceans, continents and biological systems. This book is a review of our knowledge of the relationship between aerosols and precipitation reaching the Earth's surface and it includes a list of recommendations that could help to advance our knowledge in this area.

Chapter 3

Chapter 3 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Any attempt to reconcile observed surface temperature changes within the last 150 years to changes simulated by climate models that include various atmospheric forcings is sensitive to the changes attributed to aerosols and aerosol-cloud-climate interactions, which are the main contributors that may well balance the positive forcings associated with greenhouse gases, absorbing aerosols, ozone related changes, etc. These aerosol effects on climate, from various modeling studies discussed in Menon (2004), range from +0.8 to -2.4 W m−2, with an implied value of -1.0 W m−2 (range from -0.5 to -4.5 W m−2) for the aerosol indirect effects. Quantifying the contribution of aerosols and aerosol-cloud interactions remain complicated for several reasons some of which are related to aerosol distributions and some to the processes used to represent their effects on clouds. Aerosol effects on low lying marine stratocumulus clouds that cover much of the Earth's surface (about 70%) have been the focus of most of prior aerosol-cloud interaction effect simulations. Since cumulus clouds (shallow and deep convective) are short lived and cover about 15 to 20% of the Earth's surface, they are not usually considered as radiatively important. However, the large amount of latent heat released from convective towers, and corresponding changes in precipitation, especially in biomass regions due to convective heating effects (Graf et al. 2004), suggest that these cloud systems and aerosol effects on them, must be examined more closely. The radiative heating effects for mature deep convective systems can account for 10-30% of maximum latent heating effects and thus cannot be ignored (Jensen and Del Genio 2003). The first study that isolated the sensitivity of cumulus clouds to aerosols was from Nober et al. (2003) who found a reduction in precipitation in biomass burning regions and shifts in circulation patterns. Aerosol effects on convection have been included in other models as well (cf. Jacobson, 2002) but the relative impacts on convective and stratiform processes were not separated. Other changes to atmospheric stability and thermodynamical quantities due to aerosol absorption are also known to be important in modifying cloud macro/micro properties. Linkages between convection and boreal biomass burning can also impact the upper troposphere and lower stratosphere, radiation and cloud microphysical properties via transport of tropospheric aerosols to the lower stratosphere during extreme convection (Fromm and Servranckx 2003). Relevant questions regarding the impact of biomass aerosols on convective cloud properties include the effects of vertical transport of aerosols, spatial and temporal distribution of rainfall, vertical shift in latent heat release, phase shift of precipitation, circulation and their impacts on radiation. Over land surfaces, a decrease in surface shortwave radiation ((almost equal to) 3-6 W m−2 per decade) has been observed between 1960 to 1990, whereas, increases of 0.4 K in land temperature during the same period that occurred have resulted in speculations that evaporation and precipitation should also have decreased (Wild et al. 2004). However, precipitation records for the same period over land do not indicate any significant trend (Beck et al. 2005). The changes in precipitation are thought to be related to increased moisture advection from the oceans (Wild et al. 2004), which may well have some contributions from aerosol-radiation-convection coupling that could modify circulation patterns and hence moisture advection in specific regions. Other important aspects of aerosol effects, besides the direct, semi-direct, microphysical and thermodynamical impacts include alteration of surface albedos, especially snow and ice covered surfaces, due to absorbing aerosols. These effects are uncertain (Jacobson, 2004) but may produce as much as 0.3 W m−2 forcing in the Northern hemisphere that could contribute to melting of ice and permafrost and change in the length of the season (e.g. early arrival of Spring) (Hansen and Nazarenko, 2004). Besides the impacts of aerosols on the surface albedos in the polar regions, and the thermodynamical impacts of Arctic haze (composed of water soluble sulfates, nitrates, organic and black carbon (BC)), the dynamical response to Arctic haze (through the radiation-circulation feedbacks that cause changes in pressure patterns) is thought to have the potential to modify the mode and strength of large-scale teleconnection patterns such as the Barrents Sea Oscillation that could affect other climate regimes (mainly Europe) (Rinke et al. 2004). Additionally, via the Asian monsoon, wind patterns over the eastern Mediterranean and lower stratospheric pollution at higher latitudes (Lelieveld et al. 2002) are thought to be linked to the pollutants found in Asia, indicating the distant climate impacts of aerosols.

Storm and Cloud Dynamics

Storm and Cloud Dynamics PDF Author: William R. Cotton
Publisher: Academic Press
ISBN: 0080916651
Category : Science
Languages : en
Pages : 826

Get Book Here

Book Description
Storm and Cloud Dynamics focuses on the dynamics of clouds and of precipitating mesoscale meteorological systems. Clouds and precipitating mesoscale systems represent some of the most important and scientifically exciting weather systems in the world. These are the systems that produce torrential rains, severe winds including downburst and tornadoes, hail, thunder and lightning, and major snow storms. Forecasting such storms represents a major challenge since they are too small to be adequately resolved by conventional observing networks and numerical prediction models. - Provides a complete treatment of clouds integrating the analysis of air motions with cloud structure, microphysics, and precipitation mechanics - Describes and explains the basic types of clouds and cloud systems that occur in the atmosphere-fog, stratus, stratocumulus, altocumulus, altostratus, cirrus, thunderstorms, tornadoes, waterspouts, orographically induced clouds, mesoscale convection complexes, hurricanes, fronts, and extratropical cyclones - Summarizes the fundamentals, both observational and theoretical, of atmospheric dynamics, thermodynamics, cloud microphysics, and radar meteorology, allowing each type of cloud to be examined in depth - Integrates the latest field observations, numerical model simulations, and theory - Supplies a theoretical treatment suitable for the advanced undergraduate or graduate level, as well as post-graduate

Cloud Dynamics

Cloud Dynamics PDF Author: PRUPPACHER
Publisher: Birkhäuser
ISBN:
Category : Juvenile Nonfiction
Languages : en
Pages : 386

Get Book Here

Book Description


Effects of Aerosols on the Properties of Deep Convective Clouds

Effects of Aerosols on the Properties of Deep Convective Clouds PDF Author: Daniel A. Brown
Publisher:
ISBN:
Category : Aerosols
Languages : en
Pages : 246

Get Book Here

Book Description
Aerosols are tiny particles that serve as nuclei for cloud droplet and ice crystal formation. Increases in aerosol concentration lead to clouds with smaller but more numerous droplets. Some recent studies have found evidence that ice crystal size in deep convective clouds is also reduced by elevated aerosol concentrations. In this study, aerosol, cloud, and radiation data in the Clouds and Earth's Radiant Energy System (CERES) Single Satellite Footprint (SSF) datastream are used to examine the findings of the earlier studies. Three years of CERES observations were used to survey the Earth for aerosols and deep convective clouds. A CERES field of view (FOV) was taken to contain a deep convective cloud if the 11-micron brightness temperature was below 210 K. To ensure that the cloud was in a region of active convection, the cloud had to be opaque at 11 microns. South America, Equatorial Africa, and the Northern Indian Ocean exhibited relatively high frequencies of deep convective clouds and contained high aerosol burdens. For each day, within each geographic region, 2° x 2° latitude x longitude regions that contained both deep convective clouds and aerosol retrievals were examined. If within a 10° x 10° region on a given day, two or more of the 2° x 2° regions were found, the differences in the properties of the clouds collocated with the large and small aerosol burdens were calculated. Differences in cloud properties were compared to simultaneous differences in aerosol burdens. This strategy ensured that the clouds and aerosols existed simultaneously and that the clouds with large aerosol burdens shared similar large-scale meteorology as those with small aerosol burdens. No link was found between the differences in aerosol burdens and deep convective cloud properties in any of the regions and seasons analyzed. Relationships among ice crystal size, cloud optical depth, and 11-micron brightness temperature were also investigated. Ice crystal diameter was found to decrease with decreasing cloud temperature. Likewise, cloud optical depth increased with decreasing cloud temperature. Such relationships among cloud properties and the inclusion of semitransparent clouds in earlier studies may explain why the findings of this study differ from those of earlier studies.

Solar Variability and Planetary Climates

Solar Variability and Planetary Climates PDF Author: Y. Calisesi
Publisher: Springer
ISBN: 9780387483399
Category : Science
Languages : en
Pages : 474

Get Book Here

Book Description
This book provides an updated overview of the processes determining the influence of solar forcing on climate. It discusses in particular the most recent developments regarding the role of aerosols in the climate system and the new insights that could be gained from the investigation of terrestrial climate analogues. The book’s structure mirrors that of the ISSI workshop held in Bern in June 2005.

Physical Processes in Clouds and Cloud Modeling

Physical Processes in Clouds and Cloud Modeling PDF Author: Alexander P. Khain
Publisher: Cambridge University Press
ISBN: 0521767431
Category : Nature
Languages : en
Pages : 643

Get Book Here

Book Description
Provides a comprehensive analysis of modern theories of cloud microphysical processes and their representation in numerical cloud models.

Shallow Clouds, Water Vapor, Circulation, and Climate Sensitivity

Shallow Clouds, Water Vapor, Circulation, and Climate Sensitivity PDF Author: Robert Pincus
Publisher: Springer
ISBN: 3319772732
Category : Science
Languages : en
Pages : 396

Get Book Here

Book Description
This volume presents a series of overview articles arising from a workshop exploring the links among shallow clouds, water vapor, circulation, and climate sensitivity. It provides a state-of-the art synthesis of understanding about the coupling of clouds and water vapor to the large-scale circulation. The emphasis is on two phenomena, namely the self-aggregation of deep convection and interactions between low clouds and the large-scale environment, with direct links to the sensitivity of climate to radiative perturbations. Each subject is approached using simulations, observations, and synthesizing theory; particular attention is paid to opportunities offered by new remote-sensing technologies, some still prospective. The collection provides a thorough grounding in topics representing one of the World Climate Research Program’s Grand Challenges. Previously published in Surveys in Geophysics, Volume 38, Issue 6, 2017 The aritcles “Observing Convective Aggregation”, “An Observational View of Relationships Between Moisture Aggregation, Cloud, and Radiative Heating Profiles”, “Implications of Warm Rain in Shallow Cumulus and Congestus Clouds for Large-Scale Circulations”, “A Survey of Precipitation-Induced Atmospheric Cold Pools over Oceans and Their Interactions with the Larger-Scale Environment”, “Low-Cloud Feedbacks from Cloud-Controlling Factors: A Review”, “Mechanisms and Model Diversity of Trade-Wind Shallow Cumulus Cloud Feedbacks: A Review”, “Structure and Dynamical Influence of Water Vapor in the Lower Tropical Troposphere”, “Emerging Technologies and Synergies for Airborne and Space-Based Measurements of Water Vapor Profiles”, “Observational Constraints on Cloud Feedbacks: The Role of Active Satellite Sensors”, and “EUREC4A: A Field Campaign to Elucidate the Couplings Between Clouds, Convection and Circulation” are available as open access articles under a CC BY 4.0 license at link.springer.com.