Effect of Turbulence on Droplet Evaporation and Drag

Effect of Turbulence on Droplet Evaporation and Drag PDF Author: Carlos Pereira Salvador
Publisher:
ISBN:
Category :
Languages : en
Pages : 320

Get Book Here

Book Description

Effect of Turbulence on Droplet Evaporation and Drag

Effect of Turbulence on Droplet Evaporation and Drag PDF Author: Carlos Pereira Salvador
Publisher:
ISBN:
Category :
Languages : en
Pages : 320

Get Book Here

Book Description


Droplet Evaporation in an Active Turbulence Grid Wind Tunnel

Droplet Evaporation in an Active Turbulence Grid Wind Tunnel PDF Author: Ferran Marti Duran
Publisher:
ISBN: 9781267815934
Category :
Languages : en
Pages : 104

Get Book Here

Book Description
In this thesis, we develop and test an experimental apparatus capable of examining the effect of turbulence on the evaporation of droplets when the Kolmogorov scale is smaller than the size of the drop (where size refers to the nominal droplet diameter). Traveling drop and suspended drop cases have been studied experimentally and the evaporation rate has also been predicted based on classical computations of transport rates. Cases involving still air, a mean flow with turbulence, and a mean flow without turbulence have been tested. The experimental data matches the theoretical computations for the case of still air and mean flow with no turbulence. There is no accepted computational model that can account for turbulent flow, but the experimental conditions tested so far do not show any measurable effect of turbulence on the evaporation rate. These findings suggest that turbulence is a much smaller factor in evaporation than is mean flow over the droplet. Hence, one suggestion for future work is to study traveling droplets with zero relative velocity to the air in order to focus the analysis on the effects of turbulence with no mean flow.

Effect of Flow Turbulence on Evaporation Rate of a Single Droplet

Effect of Flow Turbulence on Evaporation Rate of a Single Droplet PDF Author: A. V. Eckartsberg
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Droplet Vaporization in Turbulent Flow

Droplet Vaporization in Turbulent Flow PDF Author: Jung-Kyu Park
Publisher:
ISBN:
Category :
Languages : en
Pages : 382

Get Book Here

Book Description


Sea Salt Aerosol Production

Sea Salt Aerosol Production PDF Author: Ernie R. Lewis
Publisher: American Geophysical Union
ISBN: 0875904173
Category : Science
Languages : en
Pages : 423

Get Book Here

Book Description
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 152. Sea salt aerosol (SSA) exerts a major influence over a broad reach of geophysics. It is important to the physics and chemistry of the marine atmosphere and to marine geochemistry and biogeochemistry generally. It affects visibility, remote sensing, atmospheric chemistry, and air quality. Sea salt aerosol particles interact with other atmospheric gaseous and aerosol constituents by acting as sinks for condensable gases and suppressing new particle formation, thus influencing the size distribution of these other aerosols and more broadly influencing the geochemical cycles of substances with which they interact. As the key aerosol constituent over much of Earth's surface at present, and all the more so in pre-industrial times, SSA is central to description of Earth's aerosol burden.

Turbulent Drag Reduction by Surfactant Additives

Turbulent Drag Reduction by Surfactant Additives PDF Author: Feng-Chen Li
Publisher: John Wiley & Sons
ISBN: 1118181115
Category : Science
Languages : en
Pages : 233

Get Book Here

Book Description
Turbulent drag reduction by additives has long been a hot research topic. This phenomenon is inherently associated with multifold expertise. Solutions of drag-reducing additives are usually viscoelastic fluids having complicated rheological properties. Exploring the characteristics of drag-reduced turbulent flows calls for uniquely designed experimental and numerical simulation techniques and elaborate theoretical considerations. Pertinently understanding the turbulent drag reduction mechanism necessities mastering the fundamentals of turbulence and establishing a proper relationship between turbulence and the rheological properties induced by additives. Promoting the applications of the drag reduction phenomenon requires the knowledge from different fields such as chemical engineering, mechanical engineering, municipal engineering, and so on. This book gives a thorough elucidation of the turbulence characteristics and rheological behaviors, theories, special techniques and application issues for drag-reducing flows by surfactant additives based on the state-of-the-art of scientific research results through the latest experimental studies, numerical simulations and theoretical analyses. Covers turbulent drag reduction, heat transfer reduction, complex rheology and the real-world applications of drag reduction Introduces advanced testing techniques, such as PIV, LDA, and their applications in current experiments, illustrated with multiple diagrams and equations Real-world examples of the topic’s increasingly important industrial applications enable readers to implement cost- and energy-saving measures Explains the tools before presenting the research results, to give readers coverage of the subject from both theoretical and experimental viewpoints Consolidates interdisciplinary information on turbulent drag reduction by additives Turbulent Drag Reduction by Surfactant Additives is geared for researchers, graduate students, and engineers in the fields of Fluid Mechanics, Mechanical Engineering, Turbulence, Chemical Engineering, Municipal Engineering. Researchers and practitioners involved in the fields of Flow Control, Chemistry, Computational Fluid Dynamics, Experimental Fluid Dynamics, and Rheology will also find this book to be a much-needed reference on the topic.

The Evaporation of Liquid Droplets in Highly Turbulent Gas Streams

The Evaporation of Liquid Droplets in Highly Turbulent Gas Streams PDF Author: Richard Gould
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Get Book Here

Book Description
Single acetone and heptane droplets were suspended from a hypodermic needle in turbulent airflow, and the Nusselt number was obtained from direct measurements of the droplet diameter and evaporation rate. Acetone was selected because it fluoresces when irradiated with ultraviolet laser radiation while heptane was selected because of its high volatility compared with water, methanol, and ethanol which were used previously. Planar laser induced fluorescence (PLIF) measurements were made to obtain qualitative concentration measurements of gaseous acetone in the boundary layer surrounding the droplet. The goal of these measurements was to give insight as to why the evaporation rate is increased by 50 % when the gas phase turbulence is increased from the laminar flow case to the case where the freestream turbulence is 10%. The use of acetone droplets required that the influence of humidity on droplet evaporation rate be considered. Measurements of the turbulence intensity of heated freestream air were also made. Finally, many modifications to improve the experimental apparatus were made during this research project.

Evaporation and Droplet Growth in Gaseous Media

Evaporation and Droplet Growth in Gaseous Media PDF Author: N.A. Fuchs
Publisher: Elsevier
ISBN: 1483225631
Category : Science
Languages : en
Pages : 81

Get Book Here

Book Description
Evaporation and Droplet Growth in Gaseous Media deals with the evaporation of droplets of liquid in gaseous media and the reverse process of droplet growth in a medium supersaturated with the vapor of the liquid. Thediscussion is restricted to the kinetics of evaporation and growth of droplets of pure liquids (and heat transfer to the same). Comprised of three chapters, this book first examines the quasi-stationary evaporation and growth of droplets that are motionless relative to the medium and the hydrodynamic factor is absent. The Maxwell equation, the basis of the theory of evaporation of droplets in a gaseous medium, is taken into account. The influence of the Stefan flow and the concentration change at the surface on the rate of evaporation are considered, along with the evaporation of droplets in a vessel with absorbing walls and the fall in temperature of both free evaporating droplets and supported evaporating droplets. The second chapter is devoted to the quasi-stationary evaporation of droplets in a stream of gas, that is, droplets moving relative to the medium. The last chapter focuses on non-stationary evaporation and growth of droplets that either motionless or moving relative to the medium. This monograph will be of interest to students, practitioners, and researchers in inorganic and structural chemistry.

Air-Sea Exchange: Physics, Chemistry and Dynamics

Air-Sea Exchange: Physics, Chemistry and Dynamics PDF Author: G.L. Geernaert
Publisher: Springer Science & Business Media
ISBN: 9401592918
Category : Science
Languages : en
Pages : 573

Get Book Here

Book Description
During the 1980's a wealth of information was reported from field and laboratory experiments in order to validate andlor modify various aspects of the surface layer Monin-Obukhov (M-O) similarity theory for use over the sea, and to introduce and test new concepts related to high resolution flux magnitudes and variabilities. For example, data from various field experiments conducted on the North Sea, Lake Ontario, and the Atlantic experiments, among others, yielded information on the dependence of the flux coefficients on wave state. In all field projects, the usual criteria for satisfying M-O similarity were applied. The assumptions of stationarity and homogeneity was assumed to be relevant over both small and large scales. In addition, the properties of the outer layer were assumed to be "correlated" with properties of the surface layer. These assumptions generally required that data were averaged for spatial footprints representing scales greater than 25 km (or typically 30 minutes or longer for typical windspeeds). While more and more data became available over the years, and the technology applied was more reliable, robust, and durable, the flux coefficients and other turbulent parameters still exhibited significant unexplained scatter. Since the scatter did not show sufficient reduction over the years to meet customer needs, in spite of improved technology and heavy financial investments, one could only conclude that perhaps the use of similarity theory contained too many simplifications when applied to environments which were more complicated than previously thought.

Particles, Bubbles & Drops

Particles, Bubbles & Drops PDF Author: Efstathios Michaelides
Publisher: World Scientific
ISBN: 9812566473
Category : Science
Languages : en
Pages : 425

Get Book Here

Book Description
The field of multiphase flows has grown by leaps and bounds in the last thirty years and is now regarded as a major discipline. Engineering applications, products and processes with particles, bubbles and drops have consistently grown in number and importance. An increasing number of conferences, scientific fora and archived journals are dedicated to the dissemination of information on flow, heat and mass transfer of fluids with particles, bubbles and drops. Numerical computations and "thought experiments" have supplemented most physical experiments and a great deal of the product design and testing processes. The literature on computational fluid dynamics with particles, bubbles and drops has grown at an exponential rate, giving rise to new results, theories and better understanding of the transport processes with particles, bubbles and drops. This book captures and summarizes all these advances in a unified, succinct and pedagogical way. Contents: Fundamental Equations and Characteristics of Particles, Bubbles and Drops; Low Reynolds Number Flows; High Reynolds Number Flows; Non-Spherical Particles, Bubbles and Drops; Effects of Rotation, Shear and Boundaries; Effects of Turbulence; Electro-Kinetic, Thermo-Kinetic and Porosity Effects; Effects of Higher Concentration and Collisions; Molecular and Statistical Modeling; Numerical Methods-CFD. Key Features Summarizes the recent important results in the theory of transport processes of fluids with particles, bubbles and drops Presents the results in a unified and succinct way Contains more than 600 references where an interested reader may find details of the results Makes connections from all theories and results to physical and engineering applications Readership: Researchers, practicing engineers and physicists that deal with any aspects of Multiphase Flows. It will also be of interest to academics and researchers in the general fields of mechanical and chemical engineering.