Author: Jacob Bedrossian
Publisher:
ISBN: 9781470462512
Category : Damping (Mechanics)
Languages : en
Pages : 170
Book Description
"We study small disturbances to the periodic, plane Couette flow in the 3D incompressible Navier-Stokes equations at high Reynolds number Re. We prove that for sufficiently regular initial data of size [epsilon] [less than or equal to] c0Re-1 for some universal c0 > 0, the solution is global, remains within O(c0) of the Couette flow in L2, and returns to the Couette flow as t [right arrow] [infinity]. For times t >/-Re1/3, the streamwise dependence is damped by a mixing-enhanced dissipation effect and the solution is rapidly attracted to the class of "2.5 dimensional" streamwise-independent solutions referred to as streaks. Our analysis contains perturbations that experience a transient growth of kinetic energy from O(Re-1) to O(c0) due to the algebraic linear instability known as the lift-up effect. Furthermore, solutions can exhibit a direct cascade of energy to small scales. The behavior is very different from the 2D Couette flow, in which stability is independent of Re, enstrophy experiences a direct cascade, and inviscid damping is dominant (resulting in a kind of inverse energy cascade). In 3D, inviscid damping will play a role on one component of the velocity, but the primary stability mechanism is the mixing-enhanced dissipation. Central to the proof is a detailed analysis of the interplay between the stabilizing effects of the mixing and enhanced dissipation and the destabilizing effects of the lift-up effect, vortex stretching, and weakly nonlinear instabilities connected to the non-normal nature of the linearization"--
Dynamics Near the Subcritical Transition of the 3D Couette Flow I
Author: Jacob Bedrossian
Publisher:
ISBN: 9781470462512
Category : Damping (Mechanics)
Languages : en
Pages : 170
Book Description
"We study small disturbances to the periodic, plane Couette flow in the 3D incompressible Navier-Stokes equations at high Reynolds number Re. We prove that for sufficiently regular initial data of size [epsilon] [less than or equal to] c0Re-1 for some universal c0 > 0, the solution is global, remains within O(c0) of the Couette flow in L2, and returns to the Couette flow as t [right arrow] [infinity]. For times t >/-Re1/3, the streamwise dependence is damped by a mixing-enhanced dissipation effect and the solution is rapidly attracted to the class of "2.5 dimensional" streamwise-independent solutions referred to as streaks. Our analysis contains perturbations that experience a transient growth of kinetic energy from O(Re-1) to O(c0) due to the algebraic linear instability known as the lift-up effect. Furthermore, solutions can exhibit a direct cascade of energy to small scales. The behavior is very different from the 2D Couette flow, in which stability is independent of Re, enstrophy experiences a direct cascade, and inviscid damping is dominant (resulting in a kind of inverse energy cascade). In 3D, inviscid damping will play a role on one component of the velocity, but the primary stability mechanism is the mixing-enhanced dissipation. Central to the proof is a detailed analysis of the interplay between the stabilizing effects of the mixing and enhanced dissipation and the destabilizing effects of the lift-up effect, vortex stretching, and weakly nonlinear instabilities connected to the non-normal nature of the linearization"--
Publisher:
ISBN: 9781470462512
Category : Damping (Mechanics)
Languages : en
Pages : 170
Book Description
"We study small disturbances to the periodic, plane Couette flow in the 3D incompressible Navier-Stokes equations at high Reynolds number Re. We prove that for sufficiently regular initial data of size [epsilon] [less than or equal to] c0Re-1 for some universal c0 > 0, the solution is global, remains within O(c0) of the Couette flow in L2, and returns to the Couette flow as t [right arrow] [infinity]. For times t >/-Re1/3, the streamwise dependence is damped by a mixing-enhanced dissipation effect and the solution is rapidly attracted to the class of "2.5 dimensional" streamwise-independent solutions referred to as streaks. Our analysis contains perturbations that experience a transient growth of kinetic energy from O(Re-1) to O(c0) due to the algebraic linear instability known as the lift-up effect. Furthermore, solutions can exhibit a direct cascade of energy to small scales. The behavior is very different from the 2D Couette flow, in which stability is independent of Re, enstrophy experiences a direct cascade, and inviscid damping is dominant (resulting in a kind of inverse energy cascade). In 3D, inviscid damping will play a role on one component of the velocity, but the primary stability mechanism is the mixing-enhanced dissipation. Central to the proof is a detailed analysis of the interplay between the stabilizing effects of the mixing and enhanced dissipation and the destabilizing effects of the lift-up effect, vortex stretching, and weakly nonlinear instabilities connected to the non-normal nature of the linearization"--
Dynamics Near the Subcritical Transition of the 3D Couette Flow I: Below Threshold Case
Author: Jacob Bedrossian
Publisher: American Mathematical Soc.
ISBN: 1470442175
Category : Mathematics
Languages : en
Pages : 154
Book Description
The authors study small disturbances to the periodic, plane Couette flow in the 3D incompressible Navier-Stokes equations at high Reynolds number Re. They prove that for sufficiently regular initial data of size $epsilon leq c_0mathbf {Re}^-1$ for some universal $c_0 > 0$, the solution is global, remains within $O(c_0)$ of the Couette flow in $L^2$, and returns to the Couette flow as $t rightarrow infty $. For times $t gtrsim mathbf {Re}^1/3$, the streamwise dependence is damped by a mixing-enhanced dissipation effect and the solution is rapidly attracted to the class of ``2.5 dimensional'' streamwise-independent solutions referred to as streaks.
Publisher: American Mathematical Soc.
ISBN: 1470442175
Category : Mathematics
Languages : en
Pages : 154
Book Description
The authors study small disturbances to the periodic, plane Couette flow in the 3D incompressible Navier-Stokes equations at high Reynolds number Re. They prove that for sufficiently regular initial data of size $epsilon leq c_0mathbf {Re}^-1$ for some universal $c_0 > 0$, the solution is global, remains within $O(c_0)$ of the Couette flow in $L^2$, and returns to the Couette flow as $t rightarrow infty $. For times $t gtrsim mathbf {Re}^1/3$, the streamwise dependence is damped by a mixing-enhanced dissipation effect and the solution is rapidly attracted to the class of ``2.5 dimensional'' streamwise-independent solutions referred to as streaks.
Dynamics Near the Subcritical Transition of the 3D Couette Flow II: Above Threshold Case
Author: Jacob Bedrossian
Publisher: American Mathematical Society
ISBN: 1470472252
Category : Mathematics
Languages : en
Pages : 148
Book Description
View the abstract.
Publisher: American Mathematical Society
ISBN: 1470472252
Category : Mathematics
Languages : en
Pages : 148
Book Description
View the abstract.
Transition Threshold for the 3D Couette Flow in a Finite Channel
Author: Qi Chen
Publisher: American Mathematical Society
ISBN: 1470468956
Category : Mathematics
Languages : en
Pages : 190
Book Description
View the abstract.
Publisher: American Mathematical Society
ISBN: 1470468956
Category : Mathematics
Languages : en
Pages : 190
Book Description
View the abstract.
The Mathematical Analysis of the Incompressible Euler and Navier-Stokes Equations
Author: Jacob Bedrossian
Publisher: American Mathematical Society
ISBN: 1470471787
Category : Mathematics
Languages : en
Pages : 235
Book Description
The aim of this book is to provide beginning graduate students who completed the first two semesters of graduate-level analysis and PDE courses with a first exposure to the mathematical analysis of the incompressible Euler and Navier-Stokes equations. The book gives a concise introduction to the fundamental results in the well-posedness theory of these PDEs, leaving aside some of the technical challenges presented by bounded domains or by intricate functional spaces. Chapters 1 and 2 cover the fundamentals of the Euler theory: derivation, Eulerian and Lagrangian perspectives, vorticity, special solutions, existence theory for smooth solutions, and blowup criteria. Chapters 3, 4, and 5 cover the fundamentals of the Navier-Stokes theory: derivation, special solutions, existence theory for strong solutions, Leray theory of weak solutions, weak-strong uniqueness, existence theory of mild solutions, and Prodi-Serrin regularity criteria. Chapter 6 provides a short guide to the must-read topics, including active research directions, for an advanced graduate student working in incompressible fluids. It may be used as a roadmap for a topics course in a subsequent semester. The appendix recalls basic results from real, harmonic, and functional analysis. Each chapter concludes with exercises, making the text suitable for a one-semester graduate course. Prerequisites to this book are the first two semesters of graduate-level analysis and PDE courses.
Publisher: American Mathematical Society
ISBN: 1470471787
Category : Mathematics
Languages : en
Pages : 235
Book Description
The aim of this book is to provide beginning graduate students who completed the first two semesters of graduate-level analysis and PDE courses with a first exposure to the mathematical analysis of the incompressible Euler and Navier-Stokes equations. The book gives a concise introduction to the fundamental results in the well-posedness theory of these PDEs, leaving aside some of the technical challenges presented by bounded domains or by intricate functional spaces. Chapters 1 and 2 cover the fundamentals of the Euler theory: derivation, Eulerian and Lagrangian perspectives, vorticity, special solutions, existence theory for smooth solutions, and blowup criteria. Chapters 3, 4, and 5 cover the fundamentals of the Navier-Stokes theory: derivation, special solutions, existence theory for strong solutions, Leray theory of weak solutions, weak-strong uniqueness, existence theory of mild solutions, and Prodi-Serrin regularity criteria. Chapter 6 provides a short guide to the must-read topics, including active research directions, for an advanced graduate student working in incompressible fluids. It may be used as a roadmap for a topics course in a subsequent semester. The appendix recalls basic results from real, harmonic, and functional analysis. Each chapter concludes with exercises, making the text suitable for a one-semester graduate course. Prerequisites to this book are the first two semesters of graduate-level analysis and PDE courses.
Asymptotic Counting in Conformal Dynamical Systems
Author: Mark Pollicott
Publisher: American Mathematical Society
ISBN: 1470465779
Category : Mathematics
Languages : en
Pages : 139
Book Description
View the abstract.
Publisher: American Mathematical Society
ISBN: 1470465779
Category : Mathematics
Languages : en
Pages : 139
Book Description
View the abstract.
Linear Dynamical Systems on Hilbert Spaces: Typical Properties and Explicit Examples
Author: S. Grivaux
Publisher: American Mathematical Soc.
ISBN: 1470446634
Category : Education
Languages : en
Pages : 147
Book Description
We solve a number of questions pertaining to the dynamics of linear operators on Hilbert spaces, sometimes by using Baire category arguments and sometimes by constructing explicit examples. In particular, we prove the following results. (i) A typical hypercyclic operator is not topologically mixing, has no eigen-values and admits no non-trivial invariant measure, but is densely distri-butionally chaotic. (ii) A typical upper-triangular operator with coefficients of modulus 1 on the diagonal is ergodic in the Gaussian sense, whereas a typical operator of the form “diagonal with coefficients of modulus 1 on the diagonal plus backward unilateral weighted shift” is ergodic but has only countably many unimodular eigenvalues; in particular, it is ergodic but not ergodic in the Gaussian sense. (iii) There exist Hilbert space operators which are chaotic and U-frequently hypercyclic but not frequently hypercyclic, Hilbert space operators which are chaotic and frequently hypercyclic but not ergodic, and Hilbert space operators which are chaotic and topologically mixing but not U-frequently hypercyclic. We complement our results by investigating the descriptive complexity of some natural classes of operators defined by dynamical properties.
Publisher: American Mathematical Soc.
ISBN: 1470446634
Category : Education
Languages : en
Pages : 147
Book Description
We solve a number of questions pertaining to the dynamics of linear operators on Hilbert spaces, sometimes by using Baire category arguments and sometimes by constructing explicit examples. In particular, we prove the following results. (i) A typical hypercyclic operator is not topologically mixing, has no eigen-values and admits no non-trivial invariant measure, but is densely distri-butionally chaotic. (ii) A typical upper-triangular operator with coefficients of modulus 1 on the diagonal is ergodic in the Gaussian sense, whereas a typical operator of the form “diagonal with coefficients of modulus 1 on the diagonal plus backward unilateral weighted shift” is ergodic but has only countably many unimodular eigenvalues; in particular, it is ergodic but not ergodic in the Gaussian sense. (iii) There exist Hilbert space operators which are chaotic and U-frequently hypercyclic but not frequently hypercyclic, Hilbert space operators which are chaotic and frequently hypercyclic but not ergodic, and Hilbert space operators which are chaotic and topologically mixing but not U-frequently hypercyclic. We complement our results by investigating the descriptive complexity of some natural classes of operators defined by dynamical properties.
Resolvent, Heat Kernel, and Torsion under Degeneration to Fibered Cusps
Author: Pierre Albin
Publisher: American Mathematical Soc.
ISBN: 1470444224
Category : Education
Languages : en
Pages : 126
Book Description
Manifolds with fibered cusps are a class of complete non-compact Riemannian manifolds including many examples of locally symmetric spaces of rank one. We study the spectrum of the Hodge Laplacian with coefficients in a flat bundle on a closed manifold undergoing degeneration to a manifold with fibered cusps. We obtain precise asymptotics for the resolvent, the heat kernel, and the determinant of the Laplacian. Using these asymptotics we obtain a topological description of the analytic torsion on a manifold with fibered cusps in terms of the R-torsion of the underlying manifold with boundary.
Publisher: American Mathematical Soc.
ISBN: 1470444224
Category : Education
Languages : en
Pages : 126
Book Description
Manifolds with fibered cusps are a class of complete non-compact Riemannian manifolds including many examples of locally symmetric spaces of rank one. We study the spectrum of the Hodge Laplacian with coefficients in a flat bundle on a closed manifold undergoing degeneration to a manifold with fibered cusps. We obtain precise asymptotics for the resolvent, the heat kernel, and the determinant of the Laplacian. Using these asymptotics we obtain a topological description of the analytic torsion on a manifold with fibered cusps in terms of the R-torsion of the underlying manifold with boundary.
Operator Theory on One-Sided Quaternion Linear Spaces: Intrinsic $S$-Functional Calculus and Spectral Operators
Author: Jonathan Gantner
Publisher: American Mathematical Society
ISBN: 1470442388
Category : Mathematics
Languages : en
Pages : 114
Book Description
Two major themes drive this article: identifying the minimal structure necessary to formulate quaternionic operator theory and revealing a deep relation between complex and quaternionic operator theory. The theory for quaternionic right linear operators is usually formulated under the assumption that there exists not only a right- but also a left-multiplication on the considered Banach space $V$. This has technical reasons, as the space of bounded operators on $V$ is otherwise not a quaternionic linear space. A right linear operator is however only associated with the right multiplication on the space and in certain settings, for instance on quaternionic Hilbert spaces, the left multiplication is not defined a priori, but must be chosen randomly. Spectral properties of an operator should hence be independent of the left multiplication on the space.
Publisher: American Mathematical Society
ISBN: 1470442388
Category : Mathematics
Languages : en
Pages : 114
Book Description
Two major themes drive this article: identifying the minimal structure necessary to formulate quaternionic operator theory and revealing a deep relation between complex and quaternionic operator theory. The theory for quaternionic right linear operators is usually formulated under the assumption that there exists not only a right- but also a left-multiplication on the considered Banach space $V$. This has technical reasons, as the space of bounded operators on $V$ is otherwise not a quaternionic linear space. A right linear operator is however only associated with the right multiplication on the space and in certain settings, for instance on quaternionic Hilbert spaces, the left multiplication is not defined a priori, but must be chosen randomly. Spectral properties of an operator should hence be independent of the left multiplication on the space.
Łojasiewicz-Simon Gradient Inequalities for Coupled Yang-Mills Energy Functionals
Author: Paul M Feehan
Publisher: American Mathematical Society
ISBN: 1470443023
Category : Mathematics
Languages : en
Pages : 138
Book Description
The authors' primary goal in this monograph is to prove Łojasiewicz-Simon gradient inequalities for coupled Yang-Mills energy functions using Sobolev spaces that impose minimal regularity requirements on pairs of connections and sections.
Publisher: American Mathematical Society
ISBN: 1470443023
Category : Mathematics
Languages : en
Pages : 138
Book Description
The authors' primary goal in this monograph is to prove Łojasiewicz-Simon gradient inequalities for coupled Yang-Mills energy functions using Sobolev spaces that impose minimal regularity requirements on pairs of connections and sections.