Dynamical Systems I

Dynamical Systems I PDF Author: D.V. Anosov
Publisher: Springer
ISBN: 9783540170006
Category : Mathematics
Languages : en
Pages : 237

Get Book Here

Book Description
From the reviews: "The reading is very easy and pleasant for the non-mathematician, which is really noteworthy. The two chapters enunciate the basic principles of the field, ... indicate connections with other fields of mathematics and sketch the motivation behind the various concepts which are introduced.... What is particularly pleasant is the fact that the authors are quite successful in giving to the reader the feeling behind the demonstrations which are sketched. Another point to notice is the existence of an annotated extended bibliography and a very complete index. This really enhances the value of this book and puts it at the level of a particularly interesting reference tool. I thus strongly recommend to buy this very interesting and stimulating book." Journal de Physique

Dynamical Systems I

Dynamical Systems I PDF Author: D.V. Anosov
Publisher: Springer
ISBN: 9783540170006
Category : Mathematics
Languages : en
Pages : 237

Get Book Here

Book Description
From the reviews: "The reading is very easy and pleasant for the non-mathematician, which is really noteworthy. The two chapters enunciate the basic principles of the field, ... indicate connections with other fields of mathematics and sketch the motivation behind the various concepts which are introduced.... What is particularly pleasant is the fact that the authors are quite successful in giving to the reader the feeling behind the demonstrations which are sketched. Another point to notice is the existence of an annotated extended bibliography and a very complete index. This really enhances the value of this book and puts it at the level of a particularly interesting reference tool. I thus strongly recommend to buy this very interesting and stimulating book." Journal de Physique

Dynamical Systems

Dynamical Systems PDF Author: Shlomo Sternberg
Publisher: Courier Corporation
ISBN: 0486477053
Category : Mathematics
Languages : en
Pages : 276

Get Book Here

Book Description
A pioneer in the field of dynamical systems discusses one-dimensional dynamics, differential equations, random walks, iterated function systems, symbolic dynamics, and Markov chains. Supplementary materials include PowerPoint slides and MATLAB exercises. 2010 edition.

Introduction to the Modern Theory of Dynamical Systems

Introduction to the Modern Theory of Dynamical Systems PDF Author: Anatole Katok
Publisher: Cambridge University Press
ISBN: 9780521575577
Category : Mathematics
Languages : en
Pages : 828

Get Book Here

Book Description
This book provided the first self-contained comprehensive exposition of the theory of dynamical systems as a core mathematical discipline closely intertwined with most of the main areas of mathematics. The authors introduce and rigorously develop the theory while providing researchers interested in applications with fundamental tools and paradigms. The book begins with a discussion of several elementary but fundamental examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. Over 400 systematic exercises are included in the text. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate up.

Dynamical Systems

Dynamical Systems PDF Author: Luis Barreira
Publisher: Springer Science & Business Media
ISBN: 1447148355
Category : Mathematics
Languages : en
Pages : 214

Get Book Here

Book Description
The theory of dynamical systems is a broad and active research subject with connections to most parts of mathematics. Dynamical Systems: An Introduction undertakes the difficult task to provide a self-contained and compact introduction. Topics covered include topological, low-dimensional, hyperbolic and symbolic dynamics, as well as a brief introduction to ergodic theory. In particular, the authors consider topological recurrence, topological entropy, homeomorphisms and diffeomorphisms of the circle, Sharkovski's ordering, the Poincaré-Bendixson theory, and the construction of stable manifolds, as well as an introduction to geodesic flows and the study of hyperbolicity (the latter is often absent in a first introduction). Moreover, the authors introduce the basics of symbolic dynamics, the construction of symbolic codings, invariant measures, Poincaré's recurrence theorem and Birkhoff's ergodic theorem. The exposition is mathematically rigorous, concise and direct: all statements (except for some results from other areas) are proven. At the same time, the text illustrates the theory with many examples and 140 exercises of variable levels of difficulty. The only prerequisites are a background in linear algebra, analysis and elementary topology. This is a textbook primarily designed for a one-semester or two-semesters course at the advanced undergraduate or beginning graduate levels. It can also be used for self-study and as a starting point for more advanced topics.

Differential Dynamical Systems, Revised Edition

Differential Dynamical Systems, Revised Edition PDF Author: James D. Meiss
Publisher: SIAM
ISBN: 161197464X
Category : Mathematics
Languages : en
Pages : 410

Get Book Here

Book Description
Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.

Differential Equations and Dynamical Systems

Differential Equations and Dynamical Systems PDF Author: Lawrence Perko
Publisher: Springer Science & Business Media
ISBN: 1468402498
Category : Mathematics
Languages : en
Pages : 530

Get Book Here

Book Description
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence bf interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mat!!ematics (TAM). The development of new courses is a natural consequence of a high level of excitement oil the research frontier as newer techniques, such as numerical and symbolic cotnputer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Math ematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface to the Second Edition This book covers those topics necessary for a clear understanding of the qualitative theory of ordinary differential equations and the concept of a dynamical system. It is written for advanced undergraduates and for beginning graduate students. It begins with a study of linear systems of ordinary differential equations, a topic already familiar to the student who has completed a first course in differential equations.

Data-Driven Science and Engineering

Data-Driven Science and Engineering PDF Author: Steven L. Brunton
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615

Get Book Here

Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Dynamical Systems

Dynamical Systems PDF Author: Clark Robinson
Publisher: CRC Press
ISBN: 1482227878
Category : Mathematics
Languages : en
Pages : 522

Get Book Here

Book Description
Several distinctive aspects make Dynamical Systems unique, including: treating the subject from a mathematical perspective with the proofs of most of the results included providing a careful review of background materials introducing ideas through examples and at a level accessible to a beginning graduate student

A Modern Introduction to Dynamical Systems

A Modern Introduction to Dynamical Systems PDF Author: Richard Brown
Publisher: Oxford University Press
ISBN: 0198743289
Category : Mathematics
Languages : en
Pages : 425

Get Book Here

Book Description
A senior-level, proof-based undergraduate text in the modern theory of dynamical systems that is abstract enough to satisfy the needs of a pure mathematics audience, yet application heavy and accessible enough to merit good use as an introductory text for non-math majors.

Dynamical Systems with Applications using Mathematica®

Dynamical Systems with Applications using Mathematica® PDF Author: Stephen Lynch
Publisher: Springer Science & Business Media
ISBN: 0817645861
Category : Mathematics
Languages : en
Pages : 481

Get Book Here

Book Description
This book provides an introduction to the theory of dynamical systems with the aid of the Mathematica® computer algebra package. The book has a very hands-on approach and takes the reader from basic theory to recently published research material. Emphasized throughout are numerous applications to biology, chemical kinetics, economics, electronics, epidemiology, nonlinear optics, mechanics, population dynamics, and neural networks. Theorems and proofs are kept to a minimum. The first section deals with continuous systems using ordinary differential equations, while the second part is devoted to the study of discrete dynamical systems.