Author: George Osipenko
Publisher: Springer
ISBN: 3540355952
Category : Mathematics
Languages : en
Pages : 286
Book Description
This book describes a family of algorithms for studying the global structure of systems. By a finite covering of the phase space we construct a directed graph with vertices corresponding to cells of the covering and edges corresponding to admissible transitions. The method is used, among other things, to locate the periodic orbits and the chain recurrent set, to construct the attractors and their basins, to estimate the entropy, and more.
Dynamical Systems, Graphs, and Algorithms
Author: George Osipenko
Publisher: Springer
ISBN: 3540355952
Category : Mathematics
Languages : en
Pages : 286
Book Description
This book describes a family of algorithms for studying the global structure of systems. By a finite covering of the phase space we construct a directed graph with vertices corresponding to cells of the covering and edges corresponding to admissible transitions. The method is used, among other things, to locate the periodic orbits and the chain recurrent set, to construct the attractors and their basins, to estimate the entropy, and more.
Publisher: Springer
ISBN: 3540355952
Category : Mathematics
Languages : en
Pages : 286
Book Description
This book describes a family of algorithms for studying the global structure of systems. By a finite covering of the phase space we construct a directed graph with vertices corresponding to cells of the covering and edges corresponding to admissible transitions. The method is used, among other things, to locate the periodic orbits and the chain recurrent set, to construct the attractors and their basins, to estimate the entropy, and more.
An Introduction to Sequential Dynamical Systems
Author: Henning Mortveit
Publisher: Springer Science & Business Media
ISBN: 0387498796
Category : Mathematics
Languages : en
Pages : 261
Book Description
This introductory text to the class of Sequential Dynamical Systems (SDS) is the first textbook on this timely subject. Driven by numerous examples and thought-provoking problems throughout, the presentation offers good foundational material on finite discrete dynamical systems, which then leads systematically to an introduction of SDS. From a broad range of topics on structure theory - equivalence, fixed points, invertibility and other phase space properties - thereafter SDS relations to graph theory, classical dynamical systems as well as SDS applications in computer science are explored. This is a versatile interdisciplinary textbook.
Publisher: Springer Science & Business Media
ISBN: 0387498796
Category : Mathematics
Languages : en
Pages : 261
Book Description
This introductory text to the class of Sequential Dynamical Systems (SDS) is the first textbook on this timely subject. Driven by numerous examples and thought-provoking problems throughout, the presentation offers good foundational material on finite discrete dynamical systems, which then leads systematically to an introduction of SDS. From a broad range of topics on structure theory - equivalence, fixed points, invertibility and other phase space properties - thereafter SDS relations to graph theory, classical dynamical systems as well as SDS applications in computer science are explored. This is a versatile interdisciplinary textbook.
Graphs and Algorithms
Author: Michel Gondran
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 680
Book Description
Generalities about graphs. The shortest path problem in a graph. Path algebras. Trees and arborescences. Flows and transportation networks. Flows with gains. Multicommodity flows. Matchings and b-matchings. Eulerian and hamiltonian walks. Matroids. Non-polynomial problems. Branch and bound algorithms. Approximate algorithms. Linear programming. Integer linear programming. Lagrangean relaxation and solving the dual problem. Dynamic programming. Minimum ratio problems.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 680
Book Description
Generalities about graphs. The shortest path problem in a graph. Path algebras. Trees and arborescences. Flows and transportation networks. Flows with gains. Multicommodity flows. Matchings and b-matchings. Eulerian and hamiltonian walks. Matroids. Non-polynomial problems. Branch and bound algorithms. Approximate algorithms. Linear programming. Integer linear programming. Lagrangean relaxation and solving the dual problem. Dynamic programming. Minimum ratio problems.
Discrete Networked Dynamic Systems
Author: Magdi S. Mahmoud
Publisher: Academic Press
ISBN: 0128236981
Category : Technology & Engineering
Languages : en
Pages : 484
Book Description
Discrete Networked Dynamic Systems: Analysis and Performance provides a high-level treatment of a general class of linear discrete-time dynamic systems interconnected over an information network, exchanging relative state measurements or output measurements. It presents a systematic analysis of the material and provides an account to the math development in a unified way. The topics in this book are structured along four dimensions: Agent, Environment, Interaction, and Organization, while keeping global (system-centered) and local (agent-centered) viewpoints. The focus is on the wide-sense consensus problem in discrete networked dynamic systems. The authors rely heavily on algebraic graph theory and topology to derive their results. It is known that graphs play an important role in the analysis of interactions between multiagent/distributed systems. Graph-theoretic analysis provides insight into how topological interactions play a role in achieving coordination among agents. Numerous types of graphs exist in the literature, depending on the edge set of G. A simple graph has no self-loop or edges. Complete graphs are simple graphs with an edge connecting any pair of vertices. The vertex set in a bipartite graph can be partitioned into disjoint non-empty vertex sets, whereby there is an edge connecting every vertex in one set to every vertex in the other set. Random graphs have fixed vertex sets, but the edge set exhibits stochastic behavior modeled by probability functions. Much of the studies in coordination control are based on deterministic/fixed graphs, switching graphs, and random graphs.
Publisher: Academic Press
ISBN: 0128236981
Category : Technology & Engineering
Languages : en
Pages : 484
Book Description
Discrete Networked Dynamic Systems: Analysis and Performance provides a high-level treatment of a general class of linear discrete-time dynamic systems interconnected over an information network, exchanging relative state measurements or output measurements. It presents a systematic analysis of the material and provides an account to the math development in a unified way. The topics in this book are structured along four dimensions: Agent, Environment, Interaction, and Organization, while keeping global (system-centered) and local (agent-centered) viewpoints. The focus is on the wide-sense consensus problem in discrete networked dynamic systems. The authors rely heavily on algebraic graph theory and topology to derive their results. It is known that graphs play an important role in the analysis of interactions between multiagent/distributed systems. Graph-theoretic analysis provides insight into how topological interactions play a role in achieving coordination among agents. Numerous types of graphs exist in the literature, depending on the edge set of G. A simple graph has no self-loop or edges. Complete graphs are simple graphs with an edge connecting any pair of vertices. The vertex set in a bipartite graph can be partitioned into disjoint non-empty vertex sets, whereby there is an edge connecting every vertex in one set to every vertex in the other set. Random graphs have fixed vertex sets, but the edge set exhibits stochastic behavior modeled by probability functions. Much of the studies in coordination control are based on deterministic/fixed graphs, switching graphs, and random graphs.
Graph Algorithms in the Language of Linear Algebra
Author: Jeremy Kepner
Publisher: SIAM
ISBN: 9780898719918
Category : Mathematics
Languages : en
Pages : 388
Book Description
The current exponential growth in graph data has forced a shift to parallel computing for executing graph algorithms. Implementing parallel graph algorithms and achieving good parallel performance have proven difficult. This book addresses these challenges by exploiting the well-known duality between a canonical representation of graphs as abstract collections of vertices and edges and a sparse adjacency matrix representation. This linear algebraic approach is widely accessible to scientists and engineers who may not be formally trained in computer science. The authors show how to leverage existing parallel matrix computation techniques and the large amount of software infrastructure that exists for these computations to implement efficient and scalable parallel graph algorithms. The benefits of this approach are reduced algorithmic complexity, ease of implementation, and improved performance.
Publisher: SIAM
ISBN: 9780898719918
Category : Mathematics
Languages : en
Pages : 388
Book Description
The current exponential growth in graph data has forced a shift to parallel computing for executing graph algorithms. Implementing parallel graph algorithms and achieving good parallel performance have proven difficult. This book addresses these challenges by exploiting the well-known duality between a canonical representation of graphs as abstract collections of vertices and edges and a sparse adjacency matrix representation. This linear algebraic approach is widely accessible to scientists and engineers who may not be formally trained in computer science. The authors show how to leverage existing parallel matrix computation techniques and the large amount of software infrastructure that exists for these computations to implement efficient and scalable parallel graph algorithms. The benefits of this approach are reduced algorithmic complexity, ease of implementation, and improved performance.
Handbook of Dynamical Systems
Author: B. Fiedler
Publisher: Gulf Professional Publishing
ISBN: 0080532845
Category : Science
Languages : en
Pages : 1099
Book Description
This handbook is volume II in a series collecting mathematical state-of-the-art surveys in the field of dynamical systems. Much of this field has developed from interactions with other areas of science, and this volume shows how concepts of dynamical systems further the understanding of mathematical issues that arise in applications. Although modeling issues are addressed, the central theme is the mathematically rigorous investigation of the resulting differential equations and their dynamic behavior. However, the authors and editors have made an effort to ensure readability on a non-technical level for mathematicians from other fields and for other scientists and engineers. The eighteen surveys collected here do not aspire to encyclopedic completeness, but present selected paradigms. The surveys are grouped into those emphasizing finite-dimensional methods, numerics, topological methods, and partial differential equations. Application areas include the dynamics of neural networks, fluid flows, nonlinear optics, and many others.While the survey articles can be read independently, they deeply share recurrent themes from dynamical systems. Attractors, bifurcations, center manifolds, dimension reduction, ergodicity, homoclinicity, hyperbolicity, invariant and inertial manifolds, normal forms, recurrence, shift dynamics, stability, to namejust a few, are ubiquitous dynamical concepts throughout the articles.
Publisher: Gulf Professional Publishing
ISBN: 0080532845
Category : Science
Languages : en
Pages : 1099
Book Description
This handbook is volume II in a series collecting mathematical state-of-the-art surveys in the field of dynamical systems. Much of this field has developed from interactions with other areas of science, and this volume shows how concepts of dynamical systems further the understanding of mathematical issues that arise in applications. Although modeling issues are addressed, the central theme is the mathematically rigorous investigation of the resulting differential equations and their dynamic behavior. However, the authors and editors have made an effort to ensure readability on a non-technical level for mathematicians from other fields and for other scientists and engineers. The eighteen surveys collected here do not aspire to encyclopedic completeness, but present selected paradigms. The surveys are grouped into those emphasizing finite-dimensional methods, numerics, topological methods, and partial differential equations. Application areas include the dynamics of neural networks, fluid flows, nonlinear optics, and many others.While the survey articles can be read independently, they deeply share recurrent themes from dynamical systems. Attractors, bifurcations, center manifolds, dimension reduction, ergodicity, homoclinicity, hyperbolicity, invariant and inertial manifolds, normal forms, recurrence, shift dynamics, stability, to namejust a few, are ubiquitous dynamical concepts throughout the articles.
Dynamical Systems on Networks
Author: Mason Porter
Publisher: Springer
ISBN: 3319266411
Category : Mathematics
Languages : en
Pages : 91
Book Description
This volume is a tutorial for the study of dynamical systems on networks. It discusses both methodology and models, including spreading models for social and biological contagions. The authors focus especially on “simple” situations that are analytically tractable, because they are insightful and provide useful springboards for the study of more complicated scenarios. This tutorial, which also includes key pointers to the literature, should be helpful for junior and senior undergraduate students, graduate students, and researchers from mathematics, physics, and engineering who seek to study dynamical systems on networks but who may not have prior experience with graph theory or networks. Mason A. Porter is Professor of Nonlinear and Complex Systems at the Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, UK. He is also a member of the CABDyN Complexity Centre and a Tutorial Fellow of Somerville College. James P. Gleeson is Professor of Industrial and Applied Mathematics, and co-Director of MACSI, at the University of Limerick, Ireland.
Publisher: Springer
ISBN: 3319266411
Category : Mathematics
Languages : en
Pages : 91
Book Description
This volume is a tutorial for the study of dynamical systems on networks. It discusses both methodology and models, including spreading models for social and biological contagions. The authors focus especially on “simple” situations that are analytically tractable, because they are insightful and provide useful springboards for the study of more complicated scenarios. This tutorial, which also includes key pointers to the literature, should be helpful for junior and senior undergraduate students, graduate students, and researchers from mathematics, physics, and engineering who seek to study dynamical systems on networks but who may not have prior experience with graph theory or networks. Mason A. Porter is Professor of Nonlinear and Complex Systems at the Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, UK. He is also a member of the CABDyN Complexity Centre and a Tutorial Fellow of Somerville College. James P. Gleeson is Professor of Industrial and Applied Mathematics, and co-Director of MACSI, at the University of Limerick, Ireland.
Random Graph Dynamics
Author: Rick Durrett
Publisher: Cambridge University Press
ISBN: 1139460889
Category : Mathematics
Languages : en
Pages : 203
Book Description
The theory of random graphs began in the late 1950s in several papers by Erdos and Renyi. In the late twentieth century, the notion of six degrees of separation, meaning that any two people on the planet can be connected by a short chain of people who know each other, inspired Strogatz and Watts to define the small world random graph in which each site is connected to k close neighbors, but also has long-range connections. At a similar time, it was observed in human social and sexual networks and on the Internet that the number of neighbors of an individual or computer has a power law distribution. This inspired Barabasi and Albert to define the preferential attachment model, which has these properties. These two papers have led to an explosion of research. The purpose of this book is to use a wide variety of mathematical argument to obtain insights into the properties of these graphs. A unique feature is the interest in the dynamics of process taking place on the graph in addition to their geometric properties, such as connectedness and diameter.
Publisher: Cambridge University Press
ISBN: 1139460889
Category : Mathematics
Languages : en
Pages : 203
Book Description
The theory of random graphs began in the late 1950s in several papers by Erdos and Renyi. In the late twentieth century, the notion of six degrees of separation, meaning that any two people on the planet can be connected by a short chain of people who know each other, inspired Strogatz and Watts to define the small world random graph in which each site is connected to k close neighbors, but also has long-range connections. At a similar time, it was observed in human social and sexual networks and on the Internet that the number of neighbors of an individual or computer has a power law distribution. This inspired Barabasi and Albert to define the preferential attachment model, which has these properties. These two papers have led to an explosion of research. The purpose of this book is to use a wide variety of mathematical argument to obtain insights into the properties of these graphs. A unique feature is the interest in the dynamics of process taking place on the graph in addition to their geometric properties, such as connectedness and diameter.
Mathematics of Complexity and Dynamical Systems
Author: Robert A. Meyers
Publisher: Springer Science & Business Media
ISBN: 1461418054
Category : Mathematics
Languages : en
Pages : 1885
Book Description
Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.
Publisher: Springer Science & Business Media
ISBN: 1461418054
Category : Mathematics
Languages : en
Pages : 1885
Book Description
Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.
Dynamics, Games and Science II
Author: Mauricio Matos Peixoto
Publisher: Springer Science & Business Media
ISBN: 3642147887
Category : Mathematics
Languages : en
Pages : 757
Book Description
Dynamics, Games and Science I and II are a selection of surveys and research articles written by leading researchers in mathematics. The majority of the contributions are on dynamical systems and game theory, focusing either on fundamental and theoretical developments or on applications to modeling in biology, ecomonics, engineering, finances and psychology. The papers are based on talks given at the International Conference DYNA 2008, held in honor of Mauricio Peixoto and David Rand at the University of Braga, Portugal, on September 8-12, 2008. The aim of these volumes is to present cutting-edge research in these areas to encourage graduate students and researchers in mathematics and other fields to develop them further.
Publisher: Springer Science & Business Media
ISBN: 3642147887
Category : Mathematics
Languages : en
Pages : 757
Book Description
Dynamics, Games and Science I and II are a selection of surveys and research articles written by leading researchers in mathematics. The majority of the contributions are on dynamical systems and game theory, focusing either on fundamental and theoretical developments or on applications to modeling in biology, ecomonics, engineering, finances and psychology. The papers are based on talks given at the International Conference DYNA 2008, held in honor of Mauricio Peixoto and David Rand at the University of Braga, Portugal, on September 8-12, 2008. The aim of these volumes is to present cutting-edge research in these areas to encourage graduate students and researchers in mathematics and other fields to develop them further.