Dynamical Systems-Based Soil Mechanics

Dynamical Systems-Based Soil Mechanics PDF Author: Paul Joseph
Publisher: CRC Press
ISBN: 1351757164
Category : Technology & Engineering
Languages : en
Pages : 210

Get Book Here

Book Description
This book is a short yet rigorous course on a new paradigm in soil mechanics, one that holds that soil deformation occurs as a simple friction-based Poisson process in which soil particles move to their final position at random shear strains. It originates from work by Casagrande’s soil mechanics group at Harvard University that found that an aggregate of soil particles when sheared reaches a "steady-state" condition, a finding in line with the thermodynamics of dissipative systems. The book unpacks this new paradigm as it applies to soils. The theory explains fundamental, ubiquitous soil behaviors and relationships used in soils engineering daily thousands of times across the world, but whose material bases so far have been unknown. These include for example, why for one-dimensional consolidation, the e-log σ line is linear, and why Cα/Cc is a constant for a given soil. The subtext of the book is that with this paradigm, the scientific method of trying to falsify hypotheses fully drives advances in the field, i.e., that soil mechanics now strictly qualifies as a science that, in turn, informs geotechnical engineering. The audience for the book is senior undergraduates, graduate students, academics, and researchers as well as industry professionals, particularly geotechnical engineers. It will also be useful to structural engineers, highway engineers, military engineers, persons in the construction industry, as well as planetary scientists. Because its fundamental findings hold for any mass of particles like soils, the theory applies not just to soils, but also to powders, grains etc. so long as these are under pseudo-static (no inertial effects) conditions.

Dynamical Systems-Based Soil Mechanics

Dynamical Systems-Based Soil Mechanics PDF Author: Paul Joseph
Publisher: CRC Press
ISBN: 1351757164
Category : Technology & Engineering
Languages : en
Pages : 210

Get Book Here

Book Description
This book is a short yet rigorous course on a new paradigm in soil mechanics, one that holds that soil deformation occurs as a simple friction-based Poisson process in which soil particles move to their final position at random shear strains. It originates from work by Casagrande’s soil mechanics group at Harvard University that found that an aggregate of soil particles when sheared reaches a "steady-state" condition, a finding in line with the thermodynamics of dissipative systems. The book unpacks this new paradigm as it applies to soils. The theory explains fundamental, ubiquitous soil behaviors and relationships used in soils engineering daily thousands of times across the world, but whose material bases so far have been unknown. These include for example, why for one-dimensional consolidation, the e-log σ line is linear, and why Cα/Cc is a constant for a given soil. The subtext of the book is that with this paradigm, the scientific method of trying to falsify hypotheses fully drives advances in the field, i.e., that soil mechanics now strictly qualifies as a science that, in turn, informs geotechnical engineering. The audience for the book is senior undergraduates, graduate students, academics, and researchers as well as industry professionals, particularly geotechnical engineers. It will also be useful to structural engineers, highway engineers, military engineers, persons in the construction industry, as well as planetary scientists. Because its fundamental findings hold for any mass of particles like soils, the theory applies not just to soils, but also to powders, grains etc. so long as these are under pseudo-static (no inertial effects) conditions.

Analytical Methods in Petroleum Upstream Applications

Analytical Methods in Petroleum Upstream Applications PDF Author: Cesar Ovalles
Publisher: CRC Press
ISBN: 1138001481
Category : Science
Languages : en
Pages : 2054

Get Book Here

Book Description
Effective measurement of the composition and properties of petroleum is essential for its exploration, production, and refining; however, new technologies and methodologies are not adequately documented in much of the current literature. Analytical Methods in Petroleum Upstream Applications explores advances in the analytical methods and instrumentation that allow more accurate determination of the components, classes of compounds, properties, and features of petroleum and its fractions. Recognized experts explore a host of topics, including: A petroleum molecular composition continuity model as a context for other analytical measurements A modern modular sampling system for use in the lab or the process area to collect and control samples for subsequent analysis The importance of oil-in-water measurements and monitoring The chemical and physical properties of heavy oils, their fractions, and products from their upgrading Analytical measurements using gas chromatography and nuclear magnetic resonance (NMR) applications Asphaltene and heavy ends analysis Chemometrics and modeling approaches for understanding petroleum composition and properties to improve upstream, midstream, and downstream operations Due to the renaissance of gas and oil production in North America, interest has grown in analytical methods for a wide range of applications. The understanding provided in this text is designed to help chemists, geologists, and chemical and petroleum engineers make more accurate estimates of the crude value to specific refinery configurations, providing insight into optimum development and extraction schemes.

Static and Dynamic Analysis of Engineering Structures

Static and Dynamic Analysis of Engineering Structures PDF Author: Levon G. Petrosian
Publisher: John Wiley & Sons
ISBN: 1119592836
Category : Technology & Engineering
Languages : en
Pages : 528

Get Book Here

Book Description
An authoritative guide to the theory and practice of static and dynamic structures analysis Static and Dynamic Analysis of Engineering Structures examines static and dynamic analysis of engineering structures for methodological and practical purposes. In one volume, the authors – noted engineering experts – provide an overview of the topic and review the applications of modern as well as classic methods of calculation of various structure mechanics problems. They clearly show the analytical and mechanical relationships between classical and modern methods of solving boundary value problems. The first chapter offers solutions to problems using traditional techniques followed by the introduction of the boundary element methods. The book discusses various discrete and continuous systems of analysis. In addition, it offers solutions for more complex systems, such as elastic waves in inhomogeneous media, frequency-dependent damping and membranes of arbitrary shape, among others. Static and Dynamic Analysis of Engineering Structures is filled with illustrative examples to aid in comprehension of the presented material. The book: Illustrates the modern methods of static and dynamic analysis of structures; Provides methods for solving boundary value problems of structural mechanics and soil mechanics; Offers a wide spectrum of applications of modern techniques and methods of calculation of static, dynamic and seismic problems of engineering design; Presents a new foundation model. Written for researchers, design engineers and specialists in the field of structural mechanics, Static and Dynamic Analysis of Engineering Structures provides a guide to analyzing static and dynamic structures, using traditional and advanced approaches with real-world, practical examples.

Unsaturated Soil Mechanics in Engineering Practice

Unsaturated Soil Mechanics in Engineering Practice PDF Author: Delwyn G. Fredlund
Publisher: John Wiley & Sons
ISBN: 1118280504
Category : Technology & Engineering
Languages : en
Pages : 946

Get Book Here

Book Description
The definitive guide to unsaturated soil— from the world's experts on the subject This book builds upon and substantially updates Fredlund and Rahardjo's publication, Soil Mechanics for Unsaturated Soils, the current standard in the field of unsaturated soils. It provides readers with more thorough coverage of the state of the art of unsaturated soil behavior and better reflects the manner in which practical unsaturated soil engineering problems are solved. Retaining the fundamental physics of unsaturated soil behavior presented in the earlier book, this new publication places greater emphasis on the importance of the "soil-water characteristic curve" in solving practical engineering problems, as well as the quantification of thermal and moisture boundary conditions based on the use of weather data. Topics covered include: Theory to Practice of Unsaturated Soil Mechanics Nature and Phase Properties of Unsaturated Soil State Variables for Unsaturated Soils Measurement and Estimation of State Variables Soil-Water Characteristic Curves for Unsaturated Soils Ground Surface Moisture Flux Boundary Conditions Theory of Water Flow through Unsaturated Soils Solving Saturated/Unsaturated Water Flow Problems Air Flow through Unsaturated Soils Heat Flow Analysis for Unsaturated Soils Shear Strength of Unsaturated Soils Shear Strength Applications in Plastic and Limit Equilibrium Stress-Deformation Analysis for Unsaturated Soils Solving Stress-Deformation Problems with Unsaturated Soils Compressibility and Pore Pressure Parameters Consolidation and Swelling Processes in Unsaturated Soils Unsaturated Soil Mechanics in Engineering Practice is essential reading for geotechnical engineers, civil engineers, and undergraduate- and graduate-level civil engineering students with a focus on soil mechanics.

Soil Mechanics

Soil Mechanics PDF Author: A. Aysen
Publisher: CRC Press
ISBN: 9789058093585
Category : Technology & Engineering
Languages : en
Pages : 480

Get Book Here

Book Description
A logical, integrated and comprehensive coverage of both introductory and advanced topics in soil mechanics in an easy-to-understand style. Emphasis is placed on presenting fundamental behaviour before more advanced topics are introduced. The use of S.I. units throughout, and frequent references to current international codes of practice and refereed research papers, make the contents universally applicable. Written with the university student in mind and packed full of pedagogical features, this book provides an integrated and comprehensive coverage of both introductory and advanced topics in soil mechanics. It includes: worked examples to elucidate the technical content and facilitate self-learning a convenient structure (the book is divided into sections), enabling it to be used throughout second, third and fourth year undergraduate courses universally applicable contents through the use of SI units throughout, frequent references to current international codes of practice and refereed research papers new and advanced topics that extend beyond those in standard undergraduate courses. The perfect textbook for a range of courses on soils mechanics and also a very valuable resource for practising professional engineers.

Mathematical Modeling of Earth's Dynamical Systems

Mathematical Modeling of Earth's Dynamical Systems PDF Author: Rudy Slingerland
Publisher: Princeton University Press
ISBN: 1400839114
Category : Science
Languages : en
Pages : 246

Get Book Here

Book Description
A concise guide to representing complex Earth systems using simple dynamic models Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of dynamic equations. It shows students how to recognize domains of interest and key factors, and how to explain assumptions in formal terms. The book reveals what data best tests ideas of how nature works, and cautions against inadequate transport laws, unconstrained coefficients, and unfalsifiable models. Various examples of processes and systems, and ample illustrations, are provided. Students using this text should be familiar with the principles of physics, chemistry, and geology, and have taken a year of differential and integral calculus. Mathematical Modeling of Earth's Dynamical Systems helps earth scientists develop a philosophical framework and strong foundations for conceptualizing complex geologic systems. Step-by-step lessons for representing complex Earth systems as dynamical models Explains geologic processes in terms of fundamental laws of physics and chemistry Numerical solutions to differential equations through the finite difference technique A philosophical approach to quantitative problem-solving Various examples of processes and systems, including the evolution of sandy coastlines, the global carbon cycle, and much more Professors: A supplementary Instructor's Manual is available for this book. It is restricted to teachers using the text in courses. For information on how to obtain a copy, refer to: http://press.princeton.edu/class_use/solutions.html

Soil Mechanics in Engineering Practice

Soil Mechanics in Engineering Practice PDF Author: Karl Terzaghi
Publisher: Wharton Press
ISBN: 1446514145
Category : Science
Languages : en
Pages : 588

Get Book Here

Book Description
This book constitutes the definitive handbook to soil mechanics, covering in great detail such topics as: Properties of Soils, Hydraulic and Mechanical Properties of Soils, Drainage of Soils, Plastic Equilibrium in Soils, Earth Stability and Pressure of Slopes, Foundations, etc. A valuable compendium for those interested in soil mechanics, this antiquarian text contains a wealth of information still very much valuable to engineers today. Karl von Terzaghi (1883 1963) was a Czech geologist and Civil engineer, hailed as the "father of soil mechanics." This book has been elected for republication due to its educational value and is proudly republished here with an introductory biography of the author."

Correlations of Soil and Rock Properties in Geotechnical Engineering

Correlations of Soil and Rock Properties in Geotechnical Engineering PDF Author: Jay Ameratunga
Publisher: Springer
ISBN: 8132226291
Category : Science
Languages : en
Pages : 236

Get Book Here

Book Description
This book presents a one-stop reference to the empirical correlations used extensively in geotechnical engineering. Empirical correlations play a key role in geotechnical engineering designs and analysis. Laboratory and in situ testing of soils can add significant cost to a civil engineering project. By using appropriate empirical correlations, it is possible to derive many design parameters, thus limiting our reliance on these soil tests. The authors have decades of experience in geotechnical engineering, as professional engineers or researchers. The objective of this book is to present a critical evaluation of a wide range of empirical correlations reported in the literature, along with typical values of soil parameters, in the light of their experience and knowledge. This book will be a one-stop-shop for the practising professionals, geotechnical researchers and academics looking for specific correlations for estimating certain geotechnical parameters. The empirical correlations in the forms of equations and charts and typical values are collated from extensive literature review, and from the authors' database.

Innovative Earthquake Soil Dynamics

Innovative Earthquake Soil Dynamics PDF Author: Takaji Kokusho
Publisher: CRC Press
ISBN: 1317290852
Category : Technology & Engineering
Languages : en
Pages : 557

Get Book Here

Book Description
Innovative Earthquake Soil Dynamics deals with soil dynamics in earthquake engineering and includes almost all aspects of soil behavior. Both generally accepted basic knowledge as well as advanced and innovative views are accommodated. Major topics are (i) seismic site amplification, (ii) liquefaction and (iii) earthquake-induced slope failure. Associated with the above, basic theories and knowledge on wave propagation/attenuation, soil properties, laboratory tests, numerical analyses, and model tests are addressed in the first part of the book. A great number of earthquake observations in surface soil deposits as well as case histories with new findings are addressed in the later chapters, together with associated laboratory test data. Most of the research results originate from Japan, which is rich in earthquake records and case histories, although mostly isolated from the outside world because of the language barrier. Another important feature characterizing this book is an energy perspective in addition to the force-equilibrium perspective, because it is the author’s strong belief that energy is a very relevant index in determining seismic failures, particularly of soils and soil structures. Innovative Earthquake Soil Dynamics is written for international readers, graduate students, researchers, and practicing engineers, interested in this field.

Modeling in Geotechnical Engineering

Modeling in Geotechnical Engineering PDF Author: Pijush Samui
Publisher: Academic Press
ISBN: 0128218525
Category : Technology & Engineering
Languages : en
Pages : 518

Get Book Here

Book Description
Modeling in Geotechnical Engineering is a one stop reference for a range of computational models, the theory explaining how they work, and case studies describing how to apply them. Drawing on the expertise of contributors from a range of disciplines including geomechanics, optimization, and computational engineering, this book provides an interdisciplinary guide to this subject which is suitable for readers from a range of backgrounds. Before tackling the computational approaches, a theoretical understanding of the physical systems is provided that helps readers to fully grasp the significance of the numerical methods. The various models are presented in detail, and advice is provided on how to select the correct model for your application. - Provides detailed descriptions of different computational modelling methods for geotechnical applications, including the finite element method, the finite difference method, and the boundary element method - Gives readers the latest advice on the use of big data analytics and artificial intelligence in geotechnical engineering - Includes case studies to help readers apply the methods described in their own work