Author: V.I. Arnold
Publisher: Springer Science & Business Media
ISBN: 3642578845
Category : Mathematics
Languages : en
Pages : 279
Book Description
Bifurcation theory and catastrophe theory are two well-known areas within the field of dynamical systems. Both are studies of smooth systems, focusing on properties that seem to be manifestly non-smooth. Bifurcation theory is concerned with the sudden changes that occur in a system when one or more parameters are varied. Examples of such are familiar to students of differential equations, from phase portraits. Understanding the bifurcations of the differential equations that describe real physical systems provides important information about the behavior of the systems. Catastrophe theory became quite famous during the 1970's, mostly because of the sensation caused by the usually less than rigorous applications of its principal ideas to "hot topics", such as the characterization of personalities and the difference between a "genius" and a "maniac". Catastrophe theory is accurately described as singularity theory and its (genuine) applications. The authors of this book, previously published as Volume 5 of the Encyclopaedia, have given a masterly exposition of these two theories, with penetrating insight.
Dynamical Systems V
Author: V.I. Arnold
Publisher: Springer Science & Business Media
ISBN: 3642578845
Category : Mathematics
Languages : en
Pages : 279
Book Description
Bifurcation theory and catastrophe theory are two well-known areas within the field of dynamical systems. Both are studies of smooth systems, focusing on properties that seem to be manifestly non-smooth. Bifurcation theory is concerned with the sudden changes that occur in a system when one or more parameters are varied. Examples of such are familiar to students of differential equations, from phase portraits. Understanding the bifurcations of the differential equations that describe real physical systems provides important information about the behavior of the systems. Catastrophe theory became quite famous during the 1970's, mostly because of the sensation caused by the usually less than rigorous applications of its principal ideas to "hot topics", such as the characterization of personalities and the difference between a "genius" and a "maniac". Catastrophe theory is accurately described as singularity theory and its (genuine) applications. The authors of this book, previously published as Volume 5 of the Encyclopaedia, have given a masterly exposition of these two theories, with penetrating insight.
Publisher: Springer Science & Business Media
ISBN: 3642578845
Category : Mathematics
Languages : en
Pages : 279
Book Description
Bifurcation theory and catastrophe theory are two well-known areas within the field of dynamical systems. Both are studies of smooth systems, focusing on properties that seem to be manifestly non-smooth. Bifurcation theory is concerned with the sudden changes that occur in a system when one or more parameters are varied. Examples of such are familiar to students of differential equations, from phase portraits. Understanding the bifurcations of the differential equations that describe real physical systems provides important information about the behavior of the systems. Catastrophe theory became quite famous during the 1970's, mostly because of the sensation caused by the usually less than rigorous applications of its principal ideas to "hot topics", such as the characterization of personalities and the difference between a "genius" and a "maniac". Catastrophe theory is accurately described as singularity theory and its (genuine) applications. The authors of this book, previously published as Volume 5 of the Encyclopaedia, have given a masterly exposition of these two theories, with penetrating insight.
Catastrophe Theory
Author: Vladimir I. Arnol'd
Publisher: Springer Science & Business Media
ISBN: 3642969372
Category : Mathematics
Languages : en
Pages : 120
Book Description
Publisher: Springer Science & Business Media
ISBN: 3642969372
Category : Mathematics
Languages : en
Pages : 120
Book Description
Elements of Applied Bifurcation Theory
Author: Yuri Kuznetsov
Publisher: Springer Science & Business Media
ISBN: 1475739788
Category : Mathematics
Languages : en
Pages : 648
Book Description
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.
Publisher: Springer Science & Business Media
ISBN: 1475739788
Category : Mathematics
Languages : en
Pages : 648
Book Description
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.
Bifurcation Theory And Methods Of Dynamical Systems
Author: Maoan Han
Publisher: World Scientific
ISBN: 9814501093
Category : Mathematics
Languages : en
Pages : 476
Book Description
Dynamical bifurcation theory is concerned with the changes that occur in the global structure of dynamical systems as parameters are varied. This book makes recent research in bifurcation theory of dynamical systems accessible to researchers interested in this subject. In particular, the relevant results obtained by Chinese mathematicians are introduced as well as some of the works of the authors which may not be widely known. The focus is on the analytic approach to the theory and methods of bifurcations. The book prepares graduate students for further study in this area, and it serves as a ready reference for researchers in nonlinear sciences and applied mathematics.
Publisher: World Scientific
ISBN: 9814501093
Category : Mathematics
Languages : en
Pages : 476
Book Description
Dynamical bifurcation theory is concerned with the changes that occur in the global structure of dynamical systems as parameters are varied. This book makes recent research in bifurcation theory of dynamical systems accessible to researchers interested in this subject. In particular, the relevant results obtained by Chinese mathematicians are introduced as well as some of the works of the authors which may not be widely known. The focus is on the analytic approach to the theory and methods of bifurcations. The book prepares graduate students for further study in this area, and it serves as a ready reference for researchers in nonlinear sciences and applied mathematics.
Bifurcation Theory And Applications
Author: Shouhong Wang
Publisher: World Scientific
ISBN: 9814480592
Category : Science
Languages : en
Pages : 391
Book Description
This book covers comprehensive bifurcation theory and its applications to dynamical systems and partial differential equations (PDEs) from science and engineering, including in particular PDEs from physics, chemistry, biology, and hydrodynamics.The book first introduces bifurcation theories recently developed by the authors, on steady state bifurcation for a class of nonlinear problems with even order nondegenerate nonlinearities, regardless of the multiplicity of the eigenvalues, and on attractor bifurcations for nonlinear evolution equations, a new notion of bifurcation.With this new notion of bifurcation, many longstanding bifurcation problems in science and engineering are becoming accessible, and are treated in the second part of the book. In particular, applications are covered for a variety of PDEs from science and engineering, including the Kuramoto-Sivashinsky equation, the Cahn-Hillard equation, the Ginzburg-Landau equation, reaction-diffusion equations in biology and chemistry, the Benard convection problem, and the Taylor problem. The applications provide, on the one hand, general recipes for other applications of the theory addressed in this book, and on the other, full classifications of the bifurcated attractor and the global attractor as the control parameters cross certain critical values, dictated usually by the eigenvalues of the linearized problems. It is expected that the book will greatly advance the study of nonlinear dynamics for many problems in science and engineering.
Publisher: World Scientific
ISBN: 9814480592
Category : Science
Languages : en
Pages : 391
Book Description
This book covers comprehensive bifurcation theory and its applications to dynamical systems and partial differential equations (PDEs) from science and engineering, including in particular PDEs from physics, chemistry, biology, and hydrodynamics.The book first introduces bifurcation theories recently developed by the authors, on steady state bifurcation for a class of nonlinear problems with even order nondegenerate nonlinearities, regardless of the multiplicity of the eigenvalues, and on attractor bifurcations for nonlinear evolution equations, a new notion of bifurcation.With this new notion of bifurcation, many longstanding bifurcation problems in science and engineering are becoming accessible, and are treated in the second part of the book. In particular, applications are covered for a variety of PDEs from science and engineering, including the Kuramoto-Sivashinsky equation, the Cahn-Hillard equation, the Ginzburg-Landau equation, reaction-diffusion equations in biology and chemistry, the Benard convection problem, and the Taylor problem. The applications provide, on the one hand, general recipes for other applications of the theory addressed in this book, and on the other, full classifications of the bifurcated attractor and the global attractor as the control parameters cross certain critical values, dictated usually by the eigenvalues of the linearized problems. It is expected that the book will greatly advance the study of nonlinear dynamics for many problems in science and engineering.
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
Author: John Guckenheimer
Publisher: Springer Science & Business Media
ISBN: 1461211409
Category : Mathematics
Languages : en
Pages : 475
Book Description
An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.
Publisher: Springer Science & Business Media
ISBN: 1461211409
Category : Mathematics
Languages : en
Pages : 475
Book Description
An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.
Bifurcation Theory of Functional Differential Equations
Author: Shangjiang Guo
Publisher: Springer Science & Business Media
ISBN: 1461469929
Category : Mathematics
Languages : en
Pages : 295
Book Description
This book provides a crash course on various methods from the bifurcation theory of Functional Differential Equations (FDEs). FDEs arise very naturally in economics, life sciences and engineering and the study of FDEs has been a major source of inspiration for advancement in nonlinear analysis and infinite dimensional dynamical systems. The book summarizes some practical and general approaches and frameworks for the investigation of bifurcation phenomena of FDEs depending on parameters with chap. This well illustrated book aims to be self contained so the readers will find in this book all relevant materials in bifurcation, dynamical systems with symmetry, functional differential equations, normal forms and center manifold reduction. This material was used in graduate courses on functional differential equations at Hunan University (China) and York University (Canada).
Publisher: Springer Science & Business Media
ISBN: 1461469929
Category : Mathematics
Languages : en
Pages : 295
Book Description
This book provides a crash course on various methods from the bifurcation theory of Functional Differential Equations (FDEs). FDEs arise very naturally in economics, life sciences and engineering and the study of FDEs has been a major source of inspiration for advancement in nonlinear analysis and infinite dimensional dynamical systems. The book summarizes some practical and general approaches and frameworks for the investigation of bifurcation phenomena of FDEs depending on parameters with chap. This well illustrated book aims to be self contained so the readers will find in this book all relevant materials in bifurcation, dynamical systems with symmetry, functional differential equations, normal forms and center manifold reduction. This material was used in graduate courses on functional differential equations at Hunan University (China) and York University (Canada).
Dynamical Systems, Bifurcation Analysis and Applications
Author: Mohd Hafiz Mohd
Publisher: Springer Nature
ISBN: 9813298324
Category : Mathematics
Languages : en
Pages : 239
Book Description
This book is the result of ​Southeast Asian Mathematical Society (SEAMS) School 2018 on Dynamical Systems and Bifurcation Analysis (DySBA). It addresses the latest developments in the field of dynamical systems, and highlights the importance of numerical continuation studies in tracking both stable and unstable steady states and bifurcation points to gain better understanding of the dynamics of the systems. The SEAMS School 2018 on DySBA was held in Penang from 6th to 13th August at the School of Mathematical Sciences, Universiti Sains Malaysia.The SEAMS Schools are part of series of intensive study programs that aim to provide opportunities for an advanced learning experience in mathematics via planned lectures, contributed talks, and hands-on workshop. This book will appeal to those postgraduates, lecturers and researchers working in the field of dynamical systems and their applications. Senior undergraduates in Mathematics will also find it useful.
Publisher: Springer Nature
ISBN: 9813298324
Category : Mathematics
Languages : en
Pages : 239
Book Description
This book is the result of ​Southeast Asian Mathematical Society (SEAMS) School 2018 on Dynamical Systems and Bifurcation Analysis (DySBA). It addresses the latest developments in the field of dynamical systems, and highlights the importance of numerical continuation studies in tracking both stable and unstable steady states and bifurcation points to gain better understanding of the dynamics of the systems. The SEAMS School 2018 on DySBA was held in Penang from 6th to 13th August at the School of Mathematical Sciences, Universiti Sains Malaysia.The SEAMS Schools are part of series of intensive study programs that aim to provide opportunities for an advanced learning experience in mathematics via planned lectures, contributed talks, and hands-on workshop. This book will appeal to those postgraduates, lecturers and researchers working in the field of dynamical systems and their applications. Senior undergraduates in Mathematics will also find it useful.
Bifurcation and Stability in Nonlinear Dynamical Systems
Author: Albert C. J. Luo
Publisher: Springer Nature
ISBN: 3030229106
Category : Mathematics
Languages : en
Pages : 418
Book Description
This book systematically presents a fundamental theory for the local analysis of bifurcation and stability of equilibriums in nonlinear dynamical systems. Until now, one does not have any efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums. For instance, infinite-equilibrium dynamical systems have higher-order singularity, which dramatically changes dynamical behaviors and possesses the similar characteristics of discontinuous dynamical systems. The stability and bifurcation of equilibriums on the specific eigenvector are presented, and the spiral stability and Hopf bifurcation of equilibriums in nonlinear systems are presented through the Fourier series transformation. The bifurcation and stability of higher-order singularity equilibriums are presented through the (2m)th and (2m+1)th -degree polynomial systems. From local analysis, dynamics of infinite-equilibrium systems is discussed. The research on infinite-equilibrium systems will bring us to the new era of dynamical systems and control. Presents an efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums; Discusses dynamics of infinite-equilibrium systems; Demonstrates higher-order singularity.
Publisher: Springer Nature
ISBN: 3030229106
Category : Mathematics
Languages : en
Pages : 418
Book Description
This book systematically presents a fundamental theory for the local analysis of bifurcation and stability of equilibriums in nonlinear dynamical systems. Until now, one does not have any efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums. For instance, infinite-equilibrium dynamical systems have higher-order singularity, which dramatically changes dynamical behaviors and possesses the similar characteristics of discontinuous dynamical systems. The stability and bifurcation of equilibriums on the specific eigenvector are presented, and the spiral stability and Hopf bifurcation of equilibriums in nonlinear systems are presented through the Fourier series transformation. The bifurcation and stability of higher-order singularity equilibriums are presented through the (2m)th and (2m+1)th -degree polynomial systems. From local analysis, dynamics of infinite-equilibrium systems is discussed. The research on infinite-equilibrium systems will bring us to the new era of dynamical systems and control. Presents an efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums; Discusses dynamics of infinite-equilibrium systems; Demonstrates higher-order singularity.
Dynamics and Bifurcations
Author: Jack K. Hale
Publisher: Springer Science & Business Media
ISBN: 1461244269
Category : Mathematics
Languages : en
Pages : 577
Book Description
In recent years, due primarily to the proliferation of computers, dynamical systems has again returned to its roots in applications. It is the aim of this book to provide undergraduate and beginning graduate students in mathematics or science and engineering with a modest foundation of knowledge. Equations in dimensions one and two constitute the majority of the text, and in particular it is demonstrated that the basic notion of stability and bifurcations of vector fields are easily explained for scalar autonomous equations. Further, the authors investigate the dynamics of planar autonomous equations where new dynamical behavior, such as periodic and homoclinic orbits appears.
Publisher: Springer Science & Business Media
ISBN: 1461244269
Category : Mathematics
Languages : en
Pages : 577
Book Description
In recent years, due primarily to the proliferation of computers, dynamical systems has again returned to its roots in applications. It is the aim of this book to provide undergraduate and beginning graduate students in mathematics or science and engineering with a modest foundation of knowledge. Equations in dimensions one and two constitute the majority of the text, and in particular it is demonstrated that the basic notion of stability and bifurcations of vector fields are easily explained for scalar autonomous equations. Further, the authors investigate the dynamics of planar autonomous equations where new dynamical behavior, such as periodic and homoclinic orbits appears.