Dynamic Geometry Based on Geometric Constraints

Dynamic Geometry Based on Geometric Constraints PDF Author: Marc Freixas Boleda
Publisher:
ISBN:
Category :
Languages : en
Pages : 31

Get Book Here

Book Description

Dynamic Geometry Based on Geometric Constraints

Dynamic Geometry Based on Geometric Constraints PDF Author: Marc Freixas Boleda
Publisher:
ISBN:
Category :
Languages : en
Pages : 31

Get Book Here

Book Description


Geometric Constraint Solving in a Dynamic Geometry Framework

Geometric Constraint Solving in a Dynamic Geometry Framework PDF Author: Marta R. Hidalgo García
Publisher:
ISBN:
Category :
Languages : en
Pages : 184

Get Book Here

Book Description
Geometric constraint solving is a central topic in many fields such as parametric solid modeling, computer-aided design or chemical molecular docking. A geometric constraint problem consists of a set geometric objects on which a set of constraints is defined. Solving the geometric constraint problem means finding a placement for the geometric elements with respect to each other such that the set of constraints holds. Clearly, the primary goal of geometric constraint solving is to define rigid shapes. However an interesting problem arises when we ask whether allowing parameter constraint values to change with time makes sense. The answer is in the positive. Assuming a continuous change in the variant parameters, the result of the geometric constraint solving with variant parameters would result in the generation of families of different shapes built on top of the same geometric elements but governed by a fixed set of constraints. Considering the problem where several parameters change simultaneously would be a great accomplishment. However the potential combinatorial complexity make us to consider problems with just one variant parameter. Elaborating on work from other authors, we develop a new algorithm based on a new tool we have called h-graphs that properly solves the geometric constraint solving problem with one variant parameter. We offer a complete proof for the soundness of the approach which was missing in the original work. Dynamic geometry is a computer-based technology developed to teach geometry at secondary school, which provides the users with tools to define geometric constructions along with interaction tools such as drag-and-drop. The goal of the system is to show in the user's screen how the geometry changes in real time as the user interacts with the system. It is argued that this kind of interaction fosters students interest in experimenting and checking their ideas. The most important drawback of dynamic geometry is that it is the user who must know how the geometric problem is actually solved. Based on the fact that current user-computer interaction technology basically allows the user to drag just one geometric element at a time, we have developed a new dynamic geometry approach based on two ideas: 1) the underlying problem is just a geometric constraint problem with one variant parameter, which can be different for each drag-and-drop operation, and, 2) the burden of solving the geometric problem is left to the geometric constraint solver. Two classic and interesting problems in many computational models are the reachability and the tracing problems. Reachability consists in deciding whether a certain state of the system can be reached from a given initial state following a set of allowed transformations. This problem is paramount in many fields such as robotics, path finding, path planing, Petri Nets, etc. When translated to dynamic geometry two specific problems arise: 1) when intersecting geometric elements were at least one of them has degree two or higher, the solution is not unique and, 2) for given values assigned to constraint parameters, it may well be the case that the geometric problem is not realizable. For example computing the intersection of two parallel lines. Within our geometric constraint-based dynamic geometry system we have developed an specific approach that solves both the reachability and the tracing problems by properly applying tools from dynamic systems theory. Finally we consider Henneberg graphs, Laman graphs and tree-decomposable graphs which are fundamental tools in geometric constraint solving and its applications. We study which relationships can be established between them and show the conditions under which Henneberg constructions preserve graph tree-decomposability. Then we develop an algorithm to automatically generate tree-decomposable Laman graphs of a given order using Henneberg construction steps.

Automated Deduction in Geometry

Automated Deduction in Geometry PDF Author: Hoon Hong
Publisher: Springer
ISBN: 354031363X
Category : Computers
Languages : en
Pages : 221

Get Book Here

Book Description
This book presents the thoroughly refereed post-proceedings of the 5th International Workshop on Automated Deduction in Geometry, ADG 2004, held at Gainesville, FL, USA in September 2004. The 12 revised full papers presented aurvey current issues theoretical and methodological topics as well as applications thereof - in particular automated geometry theorem proving, automated geometry problem solving, problems of dynamic geometry, and an object-oriented language for geometric objects.

Geometric Constraint Solving and Applications

Geometric Constraint Solving and Applications PDF Author: Beat Brüderlin
Publisher: Springer Science & Business Media
ISBN: 3642588980
Category : Computers
Languages : en
Pages : 306

Get Book Here

Book Description
Geometric constraint programming increases flexibility in CAD design specifications and leads to new conceptual design paradigms. This volume features a collection of work by leading researchers developing the various aspects of constraint-based product modeling. In an introductory chapter the role of constraints in CAD systems of the future and their implications for the STEP data exchange format are discussed. The main part of the book deals with the application of constraints to conceptual and collaborative design, as well as state-of-the-art mathematical and algorithmic methods for constraint solving.

Automated Deduction in Geometry

Automated Deduction in Geometry PDF Author: Hoon Hong
Publisher: Springer Science & Business Media
ISBN: 354031332X
Category : Computers
Languages : en
Pages : 221

Get Book Here

Book Description
This book constitutes the thoroughly refereed post-proceedings of the 5th International Workshop on Automated Deduction in Geometry, ADG 2004, held at Gainesville, FL, USA in September 2004. The 12 revised full papers presented were carefully selected from the papers accepted for the workshop after careful reviewing. All current issues in the area are addressed - theoretical and methodological topics as well as applications thereof - in particular automated geometry theorem proving, automated geometry problem solving, problems of dynamic geometry, and an object-oriented language for geometric objects.

Handbook of Geometric Constraint Systems Principles

Handbook of Geometric Constraint Systems Principles PDF Author: Meera Sitharam
Publisher: CRC Press
ISBN: 1351647431
Category : Mathematics
Languages : en
Pages : 787

Get Book Here

Book Description
The Handbook of Geometric Constraint Systems Principles is an entry point to the currently used principal mathematical and computational tools and techniques of the geometric constraint system (GCS). It functions as a single source containing the core principles and results, accessible to both beginners and experts. The handbook provides a guide for students learning basic concepts, as well as experts looking to pinpoint specific results or approaches in the broad landscape. As such, the editors created this handbook to serve as a useful tool for navigating the varied concepts, approaches and results found in GCS research. Key Features: A comprehensive reference handbook authored by top researchers Includes fundamentals and techniques from multiple perspectives that span several research communities Provides recent results and a graded program of open problems and conjectures Can be used for senior undergraduate or graduate topics course introduction to the area Detailed list of figures and tables About the Editors: Meera Sitharam is currently an Associate Professor at the University of Florida’s Department of Computer & Information Science and Engineering. She received her Ph.D. at the University of Wisconsin, Madison. Audrey St. John is an Associate Professor of Computer Science at Mount Holyoke College, who received her Ph. D. from UMass Amherst. Jessica Sidman is a Professor of Mathematics on the John S. Kennedy Foundation at Mount Holyoke College. She received her Ph.D. from the University of Michigan.

Feature-based Geometric Constraints Applied to Constructive Solid Geometry

Feature-based Geometric Constraints Applied to Constructive Solid Geometry PDF Author: Ross L. Burchard
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Automated Deduction in Geometry

Automated Deduction in Geometry PDF Author: Francisco Botana
Publisher: Springer
ISBN: 3540773568
Category : Mathematics
Languages : en
Pages : 221

Get Book Here

Book Description
The papers in this volume show the lively variety of topics and methods in automated deduction in geometry, and their applicability to different branches of mathematics as well as to other sciences and technologies. The book is made up of the thoroughly refereed post-proceedings of the 6th International Workshop on Automated Deduction in Geometry, ADG 2006, held at Pontevedra, Spain, in 2006. There are a total of 13 revised full papers selected from a number of submissions.

Computing in Euclidean Geometry

Computing in Euclidean Geometry PDF Author: Ding-Zhu Du
Publisher: World Scientific
ISBN: 9789810218768
Category : Mathematics
Languages : en
Pages : 520

Get Book Here

Book Description
This book is a collection of surveys and exploratory articles about recent developments in the field of computational Euclidean geometry. Topics covered include the history of Euclidean geometry, Voronoi diagrams, randomized geometric algorithms, computational algebra, triangulations, machine proofs, topological designs, finite-element mesh, computer-aided geometric designs and Steiner trees. This second edition contains three new surveys covering geometric constraint solving, computational geometry and the exact computation paradigm.

Geometry of Nonholonomically Constrained Systems

Geometry of Nonholonomically Constrained Systems PDF Author: Richard H. Cushman
Publisher: World Scientific
ISBN: 9814289485
Category : Mathematics
Languages : en
Pages : 421

Get Book Here

Book Description
This book gives a modern differential geometric treatment of linearly nonholonomically constrained systems. It discusses in detail what is meant by symmetry of such a system and gives a general theory of how to reduce such a symmetry using the concept of a differential space and the almost Poisson bracket structure of its algebra of smooth functions. The above theory is applied to the concrete example of Carathodory's sleigh and the convex rolling rigid body. The qualitative behavior of the motion of the rolling disk is treated exhaustively and in detail. In particular, it classifies all motions of the disk, including those where the disk falls flat and those where it nearly falls flat. The geometric techniques described in this book for symmetry reduction have not appeared in any book before. Nor has the detailed description of the motion of the rolling disk. In this respect, the authors are trail-blazers in their respective fields.