Durable Phase-Change Memory Architectures PDF Download
Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Durable Phase-Change Memory Architectures PDF full book. Access full book title Durable Phase-Change Memory Architectures by . Download full books in PDF and EPUB format.
Author:
Publisher: Academic Press
ISBN: 0128187557
Category : Computers
Languages : en
Pages : 148
Get Book Here
Book Description
Advances in Computers, Volume 118, the latest volume in this innovative series published since 1960, presents detailed coverage of new advancements in computer hardware, software, theory, design and applications. Chapters in this updated release include Introduction to non-volatile memory technologies, The emerging phase-change memory, Phase-change memory architectures, Inter-line level schemes for handling hard errors in PCMs, Handling hard errors in PCMs by using intra-line level schemes, and Addressing issues with MLC Phase-change Memory. - Gives a comprehensive overlook of new memory technologies, including PCM - Provides reliability features with an in-depth discussion of physical mechanisms that are currently limiting PCM capabilities - Covers the work of well-known authors and researchers in the field - Includes volumes that are devoted to single themes or subfields of computer science
Author:
Publisher: Academic Press
ISBN: 0128187557
Category : Computers
Languages : en
Pages : 148
Get Book Here
Book Description
Advances in Computers, Volume 118, the latest volume in this innovative series published since 1960, presents detailed coverage of new advancements in computer hardware, software, theory, design and applications. Chapters in this updated release include Introduction to non-volatile memory technologies, The emerging phase-change memory, Phase-change memory architectures, Inter-line level schemes for handling hard errors in PCMs, Handling hard errors in PCMs by using intra-line level schemes, and Addressing issues with MLC Phase-change Memory. - Gives a comprehensive overlook of new memory technologies, including PCM - Provides reliability features with an in-depth discussion of physical mechanisms that are currently limiting PCM capabilities - Covers the work of well-known authors and researchers in the field - Includes volumes that are devoted to single themes or subfields of computer science
Author: Andrea Redaelli
Publisher: Springer
ISBN: 3319690531
Category : Technology & Engineering
Languages : en
Pages : 342
Get Book Here
Book Description
This book describes the physics of phase change memory devices, starting from basic operation to reliability issues. The book gives a comprehensive overlook of PCM with particular attention to the electrical transport and the phase transition physics between the two states. The book also contains design engineering details on PCM cell architecture, PCM cell arrays (including electrical circuit management), as well as the full spectrum of possible future applications.
Author: Mingu Kang
Publisher: Springer Nature
ISBN: 3030359719
Category : Technology & Engineering
Languages : en
Pages : 181
Get Book Here
Book Description
This book describes the recent innovation of deep in-memory architectures for realizing AI systems that operate at the edge of energy-latency-accuracy trade-offs. From first principles to lab prototypes, this book provides a comprehensive view of this emerging topic for both the practicing engineer in industry and the researcher in academia. The book is a journey into the exciting world of AI systems in hardware.
Author: Yuan Xie
Publisher: Springer Science & Business Media
ISBN: 144199551X
Category : Technology & Engineering
Languages : en
Pages : 321
Get Book Here
Book Description
This book explores the design implications of emerging, non-volatile memory (NVM) technologies on future computer memory hierarchy architecture designs. Since NVM technologies combine the speed of SRAM, the density of DRAM, and the non-volatility of Flash memory, they are very attractive as the basis for future universal memories. This book provides a holistic perspective on the topic, covering modeling, design, architecture and applications. The practical information included in this book will enable designers to exploit emerging memory technologies to improve significantly the performance/power/reliability of future, mainstream integrated circuits.
Author: Yoshio Nishi
Publisher: Elsevier
ISBN: 0857098098
Category : Computers
Languages : en
Pages : 456
Get Book Here
Book Description
New solutions are needed for future scaling down of nonvolatile memory. Advances in Non-volatile Memory and Storage Technology provides an overview of developing technologies and explores their strengths and weaknesses. After an overview of the current market, part one introduces improvements in flash technologies, including developments in 3D NAND flash technologies and flash memory for ultra-high density storage devices. Part two looks at the advantages of designing phase change memory and resistive random access memory technologies. It looks in particular at the fabrication, properties, and performance of nanowire phase change memory technologies. Later chapters also consider modeling of both metal oxide and resistive random access memory switching mechanisms, as well as conductive bridge random access memory technologies. Finally, part three looks to the future of alternative technologies. The areas covered include molecular, polymer, and hybrid organic memory devices, and a variety of random access memory devices such as nano-electromechanical, ferroelectric, and spin-transfer-torque magnetoresistive devices. Advances in Non-volatile Memory and Storage Technology is a key resource for postgraduate students and academic researchers in physics, materials science, and electrical engineering. It is a valuable tool for research and development managers concerned with electronics, semiconductors, nanotechnology, solid-state memories, magnetic materials, organic materials, and portable electronic devices. - Provides an overview of developing nonvolatile memory and storage technologies and explores their strengths and weaknesses - Examines improvements to flash technology, charge trapping, and resistive random access memory - Discusses emerging devices such as those based on polymer and molecular electronics, and nanoelectromechanical random access memory (RAM)
Author: Mark Tehranipoor
Publisher: Springer Nature
ISBN: 3030644480
Category : Technology & Engineering
Languages : en
Pages : 614
Get Book Here
Book Description
This book provides an overview of emerging topics in the field of hardware security, such as artificial intelligence and quantum computing, and highlights how these technologies can be leveraged to secure hardware and assure electronics supply chains. The authors are experts in emerging technologies, traditional hardware design, and hardware security and trust. Readers will gain a comprehensive understanding of hardware security problems and how to overcome them through an efficient combination of conventional approaches and emerging technologies, enabling them to design secure, reliable, and trustworthy hardware.
Author: Abhishek Bhattacharjee
Publisher: Morgan & Claypool Publishers
ISBN: 1627059334
Category : Computers
Languages : en
Pages : 177
Get Book Here
Book Description
This book provides computer engineers, academic researchers, new graduate students, and seasoned practitioners an end-to-end overview of virtual memory. We begin with a recap of foundational concepts and discuss not only state-of-the-art virtual memory hardware and software support available today, but also emerging research trends in this space. The span of topics covers processor microarchitecture, memory systems, operating system design, and memory allocation. We show how efficient virtual memory implementations hinge on careful hardware and software cooperation, and we discuss new research directions aimed at addressing emerging problems in this space. Virtual memory is a classic computer science abstraction and one of the pillars of the computing revolution. It has long enabled hardware flexibility, software portability, and overall better security, to name just a few of its powerful benefits. Nearly all user-level programs today take for granted that they will have been freed from the burden of physical memory management by the hardware, the operating system, device drivers, and system libraries. However, despite its ubiquity in systems ranging from warehouse-scale datacenters to embedded Internet of Things (IoT) devices, the overheads of virtual memory are becoming a critical performance bottleneck today. Virtual memory architectures designed for individual CPUs or even individual cores are in many cases struggling to scale up and scale out to today's systems which now increasingly include exotic hardware accelerators (such as GPUs, FPGAs, or DSPs) and emerging memory technologies (such as non-volatile memory), and which run increasingly intensive workloads (such as virtualized and/or "big data" applications). As such, many of the fundamental abstractions and implementation approaches for virtual memory are being augmented, extended, or entirely rebuilt in order to ensure that virtual memory remains viable and performant in the years to come.
Author: Youn-Hee Han
Publisher: Springer Science & Business Media
ISBN: 940075857X
Category : Technology & Engineering
Languages : en
Pages : 864
Get Book Here
Book Description
Recent advances in electronic and computer technologies have paved the way for the proliferation of ubiquitous computing and innovative applications that incorporate these technologies. This proceedings book describes these new and innovative technologies, and covers topics like Ubiquitous Communication and Networks, Security Systems, Smart Devices and Applications, Cloud and Grid Systems, Service-oriented and Web Service Computing, Embedded Hardware and Image Processing and Multimedia.
Author: Naveen Muralimanohar
Publisher: Springer Nature
ISBN: 3031017358
Category : Technology & Engineering
Languages : en
Pages : 122
Get Book Here
Book Description
As conventional memory technologies such as DRAM and Flash run into scaling challenges, architects and system designers are forced to look at alternative technologies for building future computer systems. This synthesis lecture begins by listing the requirements for a next generation memory technology and briefly surveys the landscape of novel non-volatile memories. Among these, Phase Change Memory (PCM) is emerging as a leading contender, and the authors discuss the material, device, and circuit advances underlying this exciting technology. The lecture then describes architectural solutions to enable PCM for main memories. Finally, the authors explore the impact of such byte-addressable non-volatile memories on future storage and system designs. Table of Contents: Next Generation Memory Technologies / Architecting PCM for Main Memories / Tolerating Slow Writes in PCM / Wear Leveling for Durability / Wear Leveling Under Adversarial Settings / Error Resilience in Phase Change Memories / Storage and System Design With Emerging Non-Volatile Memories
Author: Guangyu Sun
Publisher: Springer Science & Business Media
ISBN: 3319006819
Category : Technology & Engineering
Languages : en
Pages : 126
Get Book Here
Book Description
This book equips readers with tools for computer architecture of high performance, low power, and high reliability memory hierarchy in computer systems based on emerging memory technologies, such as STTRAM, PCM, FBDRAM, etc. The techniques described offer advantages of high density, near-zero static power, and immunity to soft errors, which have the potential of overcoming the “memory wall.” The authors discuss memory design from various perspectives: emerging memory technologies are employed in the memory hierarchy with novel architecture modification; hybrid memory structure is introduced to leverage advantages from multiple memory technologies; an analytical model named “Moguls” is introduced to explore quantitatively the optimization design of a memory hierarchy; finally, the vulnerability of the CMPs to radiation-based soft errors is improved by replacing different levels of on-chip memory with STT-RAMs.