Author: C.j. Goh
Publisher: CRC Press
ISBN: 1420018868
Category : Mathematics
Languages : en
Pages : 330
Book Description
This comprehensive volume covers a wide range of duality topics ranging from simple ideas in network flows to complex issues in non-convex optimization and multicriteria problems. In addition, it examines duality in the context of variational inequalities and vector variational inequalities, as generalizations to optimization. Duality in Optimizati
Duality in Optimization and Variational Inequalities
Vector Optimization with Infimum and Supremum
Author: Andreas Löhne
Publisher: Springer Science & Business Media
ISBN: 3642183514
Category : Business & Economics
Languages : en
Pages : 211
Book Description
The theory of Vector Optimization is developed by a systematic usage of infimum and supremum. In order to get existence and appropriate properties of the infimum, the image space of the vector optimization problem is embedded into a larger space, which is a subset of the power set, in fact, the space of self-infimal sets. Based on this idea we establish solution concepts, existence and duality results and algorithms for the linear case. The main advantage of this approach is the high degree of analogy to corresponding results of Scalar Optimization. The concepts and results are used to explain and to improve practically relevant algorithms for linear vector optimization problems.
Publisher: Springer Science & Business Media
ISBN: 3642183514
Category : Business & Economics
Languages : en
Pages : 211
Book Description
The theory of Vector Optimization is developed by a systematic usage of infimum and supremum. In order to get existence and appropriate properties of the infimum, the image space of the vector optimization problem is embedded into a larger space, which is a subset of the power set, in fact, the space of self-infimal sets. Based on this idea we establish solution concepts, existence and duality results and algorithms for the linear case. The main advantage of this approach is the high degree of analogy to corresponding results of Scalar Optimization. The concepts and results are used to explain and to improve practically relevant algorithms for linear vector optimization problems.
Vector Optimization
Author: Johannes Jahn
Publisher: Springer Science & Business Media
ISBN: 3540248285
Category : Business & Economics
Languages : en
Pages : 471
Book Description
In vector optimization one investigates optimal elements such as min imal, strongly minimal, properly minimal or weakly minimal elements of a nonempty subset of a partially ordered linear space. The prob lem of determining at least one of these optimal elements, if they exist at all, is also called a vector optimization problem. Problems of this type can be found not only in mathematics but also in engineer ing and economics. Vector optimization problems arise, for exam ple, in functional analysis (the Hahn-Banach theorem, the lemma of Bishop-Phelps, Ekeland's variational principle), multiobjective pro gramming, multi-criteria decision making, statistics (Bayes solutions, theory of tests, minimal covariance matrices), approximation theory (location theory, simultaneous approximation, solution of boundary value problems) and cooperative game theory (cooperative n player differential games and, as a special case, optimal control problems). In the last decade vector optimization has been extended to problems with set-valued maps. This new field of research, called set optimiza tion, seems to have important applications to variational inequalities and optimization problems with multivalued data. The roots of vector optimization go back to F. Y. Edgeworth (1881) and V. Pareto (1896) who has already given the definition of the standard optimality concept in multiobjective optimization. But in mathematics this branch of optimization has started with the leg endary paper of H. W. Kuhn and A. W. Tucker (1951). Since about v Vl Preface the end of the 60's research is intensively made in vector optimization.
Publisher: Springer Science & Business Media
ISBN: 3540248285
Category : Business & Economics
Languages : en
Pages : 471
Book Description
In vector optimization one investigates optimal elements such as min imal, strongly minimal, properly minimal or weakly minimal elements of a nonempty subset of a partially ordered linear space. The prob lem of determining at least one of these optimal elements, if they exist at all, is also called a vector optimization problem. Problems of this type can be found not only in mathematics but also in engineer ing and economics. Vector optimization problems arise, for exam ple, in functional analysis (the Hahn-Banach theorem, the lemma of Bishop-Phelps, Ekeland's variational principle), multiobjective pro gramming, multi-criteria decision making, statistics (Bayes solutions, theory of tests, minimal covariance matrices), approximation theory (location theory, simultaneous approximation, solution of boundary value problems) and cooperative game theory (cooperative n player differential games and, as a special case, optimal control problems). In the last decade vector optimization has been extended to problems with set-valued maps. This new field of research, called set optimiza tion, seems to have important applications to variational inequalities and optimization problems with multivalued data. The roots of vector optimization go back to F. Y. Edgeworth (1881) and V. Pareto (1896) who has already given the definition of the standard optimality concept in multiobjective optimization. But in mathematics this branch of optimization has started with the leg endary paper of H. W. Kuhn and A. W. Tucker (1951). Since about v Vl Preface the end of the 60's research is intensively made in vector optimization.
Theory of Vector Optimization
Author: Dinh The Luc
Publisher: Springer Science & Business Media
ISBN: 3642502806
Category : Business & Economics
Languages : en
Pages : 183
Book Description
These notes grew out of a series of lectures given by the author at the Univer sity of Budapest during 1985-1986. Additional results have been included which were obtained while the author was at the University of Erlangen-Niirnberg under a grant of the Alexander von Humboldt Foundation. Vector optimization has two main sources coming from economic equilibrium and welfare theories of Edgeworth (1881) and Pareto (1906) and from mathemat ical backgrounds of ordered spaces of Cantor (1897) and Hausdorff (1906). Later, game theory of Borel (1921) and von Neumann (1926) and production theory of Koopmans (1951) have also contributed to this area. However, only in the fifties, after the publication of Kuhn-Tucker's paper (1951) on the necessary and sufficient conditions for efficiency, and of Deubreu's paper (1954) on valuation equilibrium and Pareto optimum, has vector optimization been recognized as a mathematical discipline. The stretching development of this field began later in the seventies and eighties. Today there are a number of books on vector optimization. Most of them are concerned with the methodology and the applications. Few of them offer a systematic study of the theoretical aspects. The aim of these notes is to pro vide a unified background of vector optimization,with the emphasis on nonconvex problems in infinite dimensional spaces ordered by convex cones. The notes are arranged into six chapters. The first chapter presents prelim inary material.
Publisher: Springer Science & Business Media
ISBN: 3642502806
Category : Business & Economics
Languages : en
Pages : 183
Book Description
These notes grew out of a series of lectures given by the author at the Univer sity of Budapest during 1985-1986. Additional results have been included which were obtained while the author was at the University of Erlangen-Niirnberg under a grant of the Alexander von Humboldt Foundation. Vector optimization has two main sources coming from economic equilibrium and welfare theories of Edgeworth (1881) and Pareto (1906) and from mathemat ical backgrounds of ordered spaces of Cantor (1897) and Hausdorff (1906). Later, game theory of Borel (1921) and von Neumann (1926) and production theory of Koopmans (1951) have also contributed to this area. However, only in the fifties, after the publication of Kuhn-Tucker's paper (1951) on the necessary and sufficient conditions for efficiency, and of Deubreu's paper (1954) on valuation equilibrium and Pareto optimum, has vector optimization been recognized as a mathematical discipline. The stretching development of this field began later in the seventies and eighties. Today there are a number of books on vector optimization. Most of them are concerned with the methodology and the applications. Few of them offer a systematic study of the theoretical aspects. The aim of these notes is to pro vide a unified background of vector optimization,with the emphasis on nonconvex problems in infinite dimensional spaces ordered by convex cones. The notes are arranged into six chapters. The first chapter presents prelim inary material.
Optimization by Vector Space Methods
Author: David G. Luenberger
Publisher: John Wiley & Sons
ISBN: 9780471181170
Category : Technology & Engineering
Languages : en
Pages : 348
Book Description
Engineers must make decisions regarding the distribution of expensive resources in a manner that will be economically beneficial. This problem can be realistically formulated and logically analyzed with optimization theory. This book shows engineers how to use optimization theory to solve complex problems. Unifies the large field of optimization with a few geometric principles. Covers functional analysis with a minimum of mathematics. Contains problems that relate to the applications in the book.
Publisher: John Wiley & Sons
ISBN: 9780471181170
Category : Technology & Engineering
Languages : en
Pages : 348
Book Description
Engineers must make decisions regarding the distribution of expensive resources in a manner that will be economically beneficial. This problem can be realistically formulated and logically analyzed with optimization theory. This book shows engineers how to use optimization theory to solve complex problems. Unifies the large field of optimization with a few geometric principles. Covers functional analysis with a minimum of mathematics. Contains problems that relate to the applications in the book.
Duality in Vector Optimization
Author: Radu Ioan Bot
Publisher: Springer Science & Business Media
ISBN: 3642028861
Category : Mathematics
Languages : en
Pages : 408
Book Description
This book presents fundamentals and comprehensive results regarding duality for scalar, vector and set-valued optimization problems in a general setting. One chapter is exclusively consecrated to the scalar and vector Wolfe and Mond-Weir duality schemes.
Publisher: Springer Science & Business Media
ISBN: 3642028861
Category : Mathematics
Languages : en
Pages : 408
Book Description
This book presents fundamentals and comprehensive results regarding duality for scalar, vector and set-valued optimization problems in a general setting. One chapter is exclusively consecrated to the scalar and vector Wolfe and Mond-Weir duality schemes.
Vector Optimization
Author: Guang-ya Chen
Publisher: Springer Science & Business Media
ISBN: 9783540212898
Category : Business & Economics
Languages : en
Pages : 324
Book Description
This book is devoted to vector or multiple criteria approaches in optimization. Topics covered include: vector optimization, vector variational inequalities, vector variational principles, vector minmax inequalities and vector equilibrium problems. In particular, problems with variable ordering relations and set-valued mappings are treated. The nonlinear scalarization method is extensively used throughout the book to deal with various vector-related problems. The results presented are original and should be interesting to researchers and graduates in applied mathematics and operations research. Readers will benefit from new methods and ideas for handling multiple criteria decision problems.
Publisher: Springer Science & Business Media
ISBN: 9783540212898
Category : Business & Economics
Languages : en
Pages : 324
Book Description
This book is devoted to vector or multiple criteria approaches in optimization. Topics covered include: vector optimization, vector variational inequalities, vector variational principles, vector minmax inequalities and vector equilibrium problems. In particular, problems with variable ordering relations and set-valued mappings are treated. The nonlinear scalarization method is extensively used throughout the book to deal with various vector-related problems. The results presented are original and should be interesting to researchers and graduates in applied mathematics and operations research. Readers will benefit from new methods and ideas for handling multiple criteria decision problems.
Conjugate Duality and Optimization
Author: R. Tyrrell Rockafellar
Publisher: SIAM
ISBN: 9781611970524
Category : Technology & Engineering
Languages : en
Pages : 80
Book Description
Provides a relatively brief introduction to conjugate duality in both finite- and infinite-dimensional problems. An emphasis is placed on the fundamental importance of the concepts of Lagrangian function, saddle-point, and saddle-value. General examples are drawn from nonlinear programming, approximation, stochastic programming, the calculus of variations, and optimal control.
Publisher: SIAM
ISBN: 9781611970524
Category : Technology & Engineering
Languages : en
Pages : 80
Book Description
Provides a relatively brief introduction to conjugate duality in both finite- and infinite-dimensional problems. An emphasis is placed on the fundamental importance of the concepts of Lagrangian function, saddle-point, and saddle-value. General examples are drawn from nonlinear programming, approximation, stochastic programming, the calculus of variations, and optimal control.
Generalized Convexity and Vector Optimization
Author: Shashi K. Mishra
Publisher: Springer Science & Business Media
ISBN: 3540856714
Category : Mathematics
Languages : en
Pages : 298
Book Description
The present lecture note is dedicated to the study of the optimality conditions and the duality results for nonlinear vector optimization problems, in ?nite and in?nite dimensions. The problems include are nonlinear vector optimization problems, s- metric dual problems, continuous-time vector optimization problems, relationships between vector optimization and variational inequality problems. Nonlinear vector optimization problems arise in several contexts such as in the building and interpretation of economic models; the study of various technolo- cal processes; the development of optimal choices in ?nance; management science; production processes; transportation problems and statistical decisions, etc. In preparing this lecture note a special effort has been made to obtain a se- contained treatment of the subjects; so we hope that this may be a suitable source for a beginner in this fast growing area of research, a semester graduate course in nonlinear programing, and a good reference book. This book may be useful to theoretical economists, engineers, and applied researchers involved in this area of active research. The lecture note is divided into eight chapters: Chapter 1 brie?y deals with the notion of nonlinear programing problems with basic notations and preliminaries. Chapter 2 deals with various concepts of convex sets, convex functions, invex set, invex functions, quasiinvex functions, pseudoinvex functions, type I and generalized type I functions, V-invex functions, and univex functions.
Publisher: Springer Science & Business Media
ISBN: 3540856714
Category : Mathematics
Languages : en
Pages : 298
Book Description
The present lecture note is dedicated to the study of the optimality conditions and the duality results for nonlinear vector optimization problems, in ?nite and in?nite dimensions. The problems include are nonlinear vector optimization problems, s- metric dual problems, continuous-time vector optimization problems, relationships between vector optimization and variational inequality problems. Nonlinear vector optimization problems arise in several contexts such as in the building and interpretation of economic models; the study of various technolo- cal processes; the development of optimal choices in ?nance; management science; production processes; transportation problems and statistical decisions, etc. In preparing this lecture note a special effort has been made to obtain a se- contained treatment of the subjects; so we hope that this may be a suitable source for a beginner in this fast growing area of research, a semester graduate course in nonlinear programing, and a good reference book. This book may be useful to theoretical economists, engineers, and applied researchers involved in this area of active research. The lecture note is divided into eight chapters: Chapter 1 brie?y deals with the notion of nonlinear programing problems with basic notations and preliminaries. Chapter 2 deals with various concepts of convex sets, convex functions, invex set, invex functions, quasiinvex functions, pseudoinvex functions, type I and generalized type I functions, V-invex functions, and univex functions.
Cones and Duality
Author: Charalambos D. Aliprantis
Publisher: American Mathematical Soc.
ISBN: 0821841467
Category : Mathematics
Languages : en
Pages : 298
Book Description
Ordered vector spaces and cones made their debut in mathematics at the beginning of the twentieth century. They were developed in parallel (but from a different perspective) with functional analysis and operator theory. Before the 1950s, ordered vector spaces appeared in the literature in a fragmented way. Their systematic study began around the world after 1950 mainly through the efforts of the Russian, Japanese, German, and Dutch schools. Since cones are being employed to solve optimization problems, the theory of ordered vector spaces is an indispensable tool for solving a variety of applied problems appearing in several diverse areas, such as engineering, econometrics, and the social sciences. For this reason this theory plays a prominent role not only in functional analysis but also in a wide range of applications. This is a book about a modern perspective on cones and ordered vector spaces. It includes material that has not been presented earlier in a monograph or a textbook. With many exercises of varying degrees of difficulty, the book is suitable for graduate courses. Most of the new topics currently discussed in the book have their origins in problems from economics and finance. Therefore, the book will be valuable to any researcher and graduate student who works in mathematics, engineering, economics, finance, and any other field that uses optimization techniques.
Publisher: American Mathematical Soc.
ISBN: 0821841467
Category : Mathematics
Languages : en
Pages : 298
Book Description
Ordered vector spaces and cones made their debut in mathematics at the beginning of the twentieth century. They were developed in parallel (but from a different perspective) with functional analysis and operator theory. Before the 1950s, ordered vector spaces appeared in the literature in a fragmented way. Their systematic study began around the world after 1950 mainly through the efforts of the Russian, Japanese, German, and Dutch schools. Since cones are being employed to solve optimization problems, the theory of ordered vector spaces is an indispensable tool for solving a variety of applied problems appearing in several diverse areas, such as engineering, econometrics, and the social sciences. For this reason this theory plays a prominent role not only in functional analysis but also in a wide range of applications. This is a book about a modern perspective on cones and ordered vector spaces. It includes material that has not been presented earlier in a monograph or a textbook. With many exercises of varying degrees of difficulty, the book is suitable for graduate courses. Most of the new topics currently discussed in the book have their origins in problems from economics and finance. Therefore, the book will be valuable to any researcher and graduate student who works in mathematics, engineering, economics, finance, and any other field that uses optimization techniques.