Author: H. P. Ritzema
Publisher: Food & Agriculture Org.
ISBN: 9789251037799
Category : Nature
Languages : en
Pages : 88
Book Description
Drainage of Irrigated Lands
Author: H. P. Ritzema
Publisher: Food & Agriculture Org.
ISBN: 9789251037799
Category : Nature
Languages : en
Pages : 88
Book Description
Publisher: Food & Agriculture Org.
ISBN: 9789251037799
Category : Nature
Languages : en
Pages : 88
Book Description
Modern Land Drainage
Author: Willem Vlotman
Publisher: CRC Press
ISBN: 1000042200
Category : Science
Languages : en
Pages : 509
Book Description
Modern Land Drainage 2nd edition is a fully revised and updated edition of the 2004 edition. Modern Land Drainage describes traditional drainage formulas (Hooghoudt, Kirkham, Donnan, Ernst, Glover-Dumm) for rainfed agriculture in the humid temperature zone. Significant parts are devoted to drainage for salinity control of irrigated land in (semi-) arid zones, and to drainage of rice land in the humid tropics. Institutional, management and maintenance aspects are extensively covered, as well as the mitigation of adverse impacts of drainage interventions on the environment. The latest computer applications for drainage design in the context of integrated water management are described (DRAINMOD, HEC, SWAP, etc.). Field surveys are executed by governments, with the aid of consultants, but rarely are the end stakeholders (i.e., farmers and general public) involved from inception to planning to execution of a drainage system. Yet, during the Operation, Management and Maintenance (OMM) phase of a water management system, they are expected to takeover, run, bear and be responsible for the costs of OMM. The book describes successful methodologies and processes to be followed for engagement of stakeholders at all levels, from government to farm, from minister to farmer, and, from beginning to end. The book covers all aspects needed for sustainable drainage. The latest survey methodologies with satellites and drones are suggested to assess cause and effect. Waterlogging and salinity are the effect of something caused most likely upstream of the drainage problem location. Hence treating the cause may be more cost-effective. Triple Bottom Line (social, environmental and financial considerations) and the water-food-energy nexus are an integral part of the drainage design process. Controlled drainage, i.e. the balance of removal and conservation of drainage water and minimising solute transport as low as reasonably achievable (ALARA principle) is extensively described. This work is intended for use both as a university level textbook and as a professional handbook; it is of particular value to professionals engaged in drainage development in the context of integrated water resources and river basin management, civil and agricultural engineers, government officials, university students and libraries.
Publisher: CRC Press
ISBN: 1000042200
Category : Science
Languages : en
Pages : 509
Book Description
Modern Land Drainage 2nd edition is a fully revised and updated edition of the 2004 edition. Modern Land Drainage describes traditional drainage formulas (Hooghoudt, Kirkham, Donnan, Ernst, Glover-Dumm) for rainfed agriculture in the humid temperature zone. Significant parts are devoted to drainage for salinity control of irrigated land in (semi-) arid zones, and to drainage of rice land in the humid tropics. Institutional, management and maintenance aspects are extensively covered, as well as the mitigation of adverse impacts of drainage interventions on the environment. The latest computer applications for drainage design in the context of integrated water management are described (DRAINMOD, HEC, SWAP, etc.). Field surveys are executed by governments, with the aid of consultants, but rarely are the end stakeholders (i.e., farmers and general public) involved from inception to planning to execution of a drainage system. Yet, during the Operation, Management and Maintenance (OMM) phase of a water management system, they are expected to takeover, run, bear and be responsible for the costs of OMM. The book describes successful methodologies and processes to be followed for engagement of stakeholders at all levels, from government to farm, from minister to farmer, and, from beginning to end. The book covers all aspects needed for sustainable drainage. The latest survey methodologies with satellites and drones are suggested to assess cause and effect. Waterlogging and salinity are the effect of something caused most likely upstream of the drainage problem location. Hence treating the cause may be more cost-effective. Triple Bottom Line (social, environmental and financial considerations) and the water-food-energy nexus are an integral part of the drainage design process. Controlled drainage, i.e. the balance of removal and conservation of drainage water and minimising solute transport as low as reasonably achievable (ALARA principle) is extensively described. This work is intended for use both as a university level textbook and as a professional handbook; it is of particular value to professionals engaged in drainage development in the context of integrated water resources and river basin management, civil and agricultural engineers, government officials, university students and libraries.
Irrigation Fundamentals
Author: George H. Hargreaves
Publisher: Water Resources Publication
ISBN: 9781887201100
Category : Technology & Engineering
Languages : en
Pages : 202
Book Description
IRRIGATION FUNDAMENTALS is a comprehensive text on the basic principles and practices of applied agricultural irrigation. Written over a period of more than 10 years, it is based on the authors'' extensive experience in farming, consulting, research, teaching, and other related agricultural activities. The book is for use by teachers of introductory courses in irrigation, farmers who have some basic technical knowledge, and for administrators who need a general understanding of irrigation as an aid for policy decisions in water resource development and planning. Various factors that influence crop yield and production including climate, fertility, water, drainage, and agronomic practices are addressed. The various irrigation methods such as border, basin, contour, furrow, sub, sprinkle, and drip or trickle are described; and conditions are given for selection of the appropriate method to use. Recent developments and new technology are included herein when they have obvious practical applications, but for the most part the material presented in this book is based on well established principles and practices. Much of the content is very practical and much is essentially nontechnical. Nevertheless, some of the material covered in this book goes beyond the basic concepts in an attempt to better describe the relationships and techniques employed by irrigation scientists and irrigation engineers.From the Preface: The future of the world depends very much on how we manage natural resources. Since the year 1900 there has been a ninefold increase in global carbon emissions from burning fossil fuels, and the world population has increased about 3.7 times in this century. Vast areas of forests have been destroyed, and irrigated lands now produce 40% of the food supply. Due to depletion of groundwater reserves and an increase in population, irrigated area per capita is declining. Consequently, the irrigation of additional alluvial lands is a strategic necessity for all of humankind. Much of the alluvial lands cannot be made productive without prior development of water resources through flood control, drainage, and irrigation. The production of electricity through hydropower and the production of alcohol fuel from irrigated crops, as has been practiced for many years in Brazil, can slow the increase in carbon emissions. Such diverse developments are typically not separable; rather, they must be considered as integral parts of a comprehensive development plan. The conservation of natural resources and increasing productivity of irrigated lands are also strategic necessities. Much of the current technology is highly transferable and crop yields can be significantly increased on lands already under irrigation.The authors have worked in many countries in connection with resource inventories, teaching, and the planning, development and use of irrigation as a tool for increasing production and providing employment. They have written extensively and have been honored for their achievements. They have considerable experience with everything from primitive low-technology irrigation developments to highly developed irrigation in the USA and in dozens of countries around the world. Both of the authors have dedicated their careers to teaching, research, and consulting in agricultural irrigation and water resources development and planning. It is their hope and expectation that this book will provide incentives for investigating and documenting land and water resources, improving development, increasing crop yields, conserving resources, and improving the environment. From the Table of Contents:Chapt. 1 - INTRODUCTION: Irrigation Fundamentals: - - A Definition of Irrigation - - Statistical Perspectives of Agricultural IrrigationChapt. 2 - FACTORS INFLUENCING CROP PRODUCTION: - - Introduction - - Temperature, Radiation, and Evaporative Potential - - Climate Change - - Soil Fertility and Fertilizers - - Water Availability and Distribution - - Soil Aeration and Drainage - - Plant Density, Spacing and Leaf Area Index - - Crop VarietyChapt. 3 - AGRICULTURAL SOILS: - - Introduction - - Soil Texture and Structure - - Soil Classification and Evaluation - - Bureau of Reclamation Land Classification - - Soil Age and Topography - - Soil Chemistry - - Infiltration Rates - - Soil-Water Relationships - - Equations for Soil Water Content - - Soil Water Potential - - Measuring Soil Water ContentChapt. 4 - EVALUATING IRRIGATION RESOURCES: - - Introduction - - Climate - - Hydrology - - Human and Other Factors - - Integrated DevelopmentChapt. 5 - IRRIGATION METHODS: - - Introduction - - Graded Border Irrigation - - Basin Irrigation - - Contour Levees - - Furrow Irrigation - - Sub-Irrigation - - Sprinkle Irrigation - - Drip or Trickle Irrigation - - Selecting an Irrigation Method - - Land Grading and Leveling - - Laser-Leveling Equipment and Practices - - Computing Diagonal Slopes - - Irrigation System EvaluationChapt. 6 - CROP WATER REQUIREMENTS: - - Introduction - - Direct Methods - - Indirect Methods - - Potential Evaporation - - Reference Evapotranspiration - - Extraterrestrial Solar Radiation - - Irrigation Requirements - - Crop CoefficientsChapt. 7 - IRRIGATION SCHEDULING: - - Introduction - - Allowable Water Depletion - - Monitoring Soil Water - - Scheduling Irrigations - - Rice Irrigation
Publisher: Water Resources Publication
ISBN: 9781887201100
Category : Technology & Engineering
Languages : en
Pages : 202
Book Description
IRRIGATION FUNDAMENTALS is a comprehensive text on the basic principles and practices of applied agricultural irrigation. Written over a period of more than 10 years, it is based on the authors'' extensive experience in farming, consulting, research, teaching, and other related agricultural activities. The book is for use by teachers of introductory courses in irrigation, farmers who have some basic technical knowledge, and for administrators who need a general understanding of irrigation as an aid for policy decisions in water resource development and planning. Various factors that influence crop yield and production including climate, fertility, water, drainage, and agronomic practices are addressed. The various irrigation methods such as border, basin, contour, furrow, sub, sprinkle, and drip or trickle are described; and conditions are given for selection of the appropriate method to use. Recent developments and new technology are included herein when they have obvious practical applications, but for the most part the material presented in this book is based on well established principles and practices. Much of the content is very practical and much is essentially nontechnical. Nevertheless, some of the material covered in this book goes beyond the basic concepts in an attempt to better describe the relationships and techniques employed by irrigation scientists and irrigation engineers.From the Preface: The future of the world depends very much on how we manage natural resources. Since the year 1900 there has been a ninefold increase in global carbon emissions from burning fossil fuels, and the world population has increased about 3.7 times in this century. Vast areas of forests have been destroyed, and irrigated lands now produce 40% of the food supply. Due to depletion of groundwater reserves and an increase in population, irrigated area per capita is declining. Consequently, the irrigation of additional alluvial lands is a strategic necessity for all of humankind. Much of the alluvial lands cannot be made productive without prior development of water resources through flood control, drainage, and irrigation. The production of electricity through hydropower and the production of alcohol fuel from irrigated crops, as has been practiced for many years in Brazil, can slow the increase in carbon emissions. Such diverse developments are typically not separable; rather, they must be considered as integral parts of a comprehensive development plan. The conservation of natural resources and increasing productivity of irrigated lands are also strategic necessities. Much of the current technology is highly transferable and crop yields can be significantly increased on lands already under irrigation.The authors have worked in many countries in connection with resource inventories, teaching, and the planning, development and use of irrigation as a tool for increasing production and providing employment. They have written extensively and have been honored for their achievements. They have considerable experience with everything from primitive low-technology irrigation developments to highly developed irrigation in the USA and in dozens of countries around the world. Both of the authors have dedicated their careers to teaching, research, and consulting in agricultural irrigation and water resources development and planning. It is their hope and expectation that this book will provide incentives for investigating and documenting land and water resources, improving development, increasing crop yields, conserving resources, and improving the environment. From the Table of Contents:Chapt. 1 - INTRODUCTION: Irrigation Fundamentals: - - A Definition of Irrigation - - Statistical Perspectives of Agricultural IrrigationChapt. 2 - FACTORS INFLUENCING CROP PRODUCTION: - - Introduction - - Temperature, Radiation, and Evaporative Potential - - Climate Change - - Soil Fertility and Fertilizers - - Water Availability and Distribution - - Soil Aeration and Drainage - - Plant Density, Spacing and Leaf Area Index - - Crop VarietyChapt. 3 - AGRICULTURAL SOILS: - - Introduction - - Soil Texture and Structure - - Soil Classification and Evaluation - - Bureau of Reclamation Land Classification - - Soil Age and Topography - - Soil Chemistry - - Infiltration Rates - - Soil-Water Relationships - - Equations for Soil Water Content - - Soil Water Potential - - Measuring Soil Water ContentChapt. 4 - EVALUATING IRRIGATION RESOURCES: - - Introduction - - Climate - - Hydrology - - Human and Other Factors - - Integrated DevelopmentChapt. 5 - IRRIGATION METHODS: - - Introduction - - Graded Border Irrigation - - Basin Irrigation - - Contour Levees - - Furrow Irrigation - - Sub-Irrigation - - Sprinkle Irrigation - - Drip or Trickle Irrigation - - Selecting an Irrigation Method - - Land Grading and Leveling - - Laser-Leveling Equipment and Practices - - Computing Diagonal Slopes - - Irrigation System EvaluationChapt. 6 - CROP WATER REQUIREMENTS: - - Introduction - - Direct Methods - - Indirect Methods - - Potential Evaporation - - Reference Evapotranspiration - - Extraterrestrial Solar Radiation - - Irrigation Requirements - - Crop CoefficientsChapt. 7 - IRRIGATION SCHEDULING: - - Introduction - - Allowable Water Depletion - - Monitoring Soil Water - - Scheduling Irrigations - - Rice Irrigation
Irrigation and Drainage Engineering
Author: Peter Waller
Publisher: Springer
ISBN: 3319056999
Category : Science
Languages : en
Pages : 747
Book Description
This textbook focuses specifically on the combined topics of irrigation and drainage engineering. It emphasizes both basic concepts and practical applications of the latest technologies available. The design of irrigation, pumping, and drainage systems using Excel and Visual Basic for Applications programs are explained for both graduate and undergraduate students and practicing engineers. The book emphasizes environmental protection, economics, and engineering design processes. It includes detailed chapters on irrigation economics, soils, reference evapotranspiration, crop evapotranspiration, pipe flow, pumps, open-channel flow, groundwater, center pivots, turf and landscape, drip, orchards, wheel lines, hand lines, surfaces, greenhouse hydroponics, soil water movement, drainage systems design, drainage and wetlands contaminant fate and transport. It contains summaries, homework problems, and color photos. The book draws from the fields of fluid mechanics, soil physics, hydrology, soil chemistry, economics, and plant sciences to present a broad interdisciplinary view of the fundamental concepts in irrigation and drainage systems design.
Publisher: Springer
ISBN: 3319056999
Category : Science
Languages : en
Pages : 747
Book Description
This textbook focuses specifically on the combined topics of irrigation and drainage engineering. It emphasizes both basic concepts and practical applications of the latest technologies available. The design of irrigation, pumping, and drainage systems using Excel and Visual Basic for Applications programs are explained for both graduate and undergraduate students and practicing engineers. The book emphasizes environmental protection, economics, and engineering design processes. It includes detailed chapters on irrigation economics, soils, reference evapotranspiration, crop evapotranspiration, pipe flow, pumps, open-channel flow, groundwater, center pivots, turf and landscape, drip, orchards, wheel lines, hand lines, surfaces, greenhouse hydroponics, soil water movement, drainage systems design, drainage and wetlands contaminant fate and transport. It contains summaries, homework problems, and color photos. The book draws from the fields of fluid mechanics, soil physics, hydrology, soil chemistry, economics, and plant sciences to present a broad interdisciplinary view of the fundamental concepts in irrigation and drainage systems design.
Drainage Principles and Applications
Author: International Institute for Land Reclamation and Improvement
Publisher:
ISBN:
Category : Agricultural engineering
Languages : en
Pages : 1134
Book Description
This text book brings together 26 chapters, 546 fugures, 166 tables, a glossary of 332 definitions. Being the result of ILRI's core business: bringing together the principles and applications of drainage, by giving international courses on drainage
Publisher:
ISBN:
Category : Agricultural engineering
Languages : en
Pages : 1134
Book Description
This text book brings together 26 chapters, 546 fugures, 166 tables, a glossary of 332 definitions. Being the result of ILRI's core business: bringing together the principles and applications of drainage, by giving international courses on drainage
Drainage of Irrigated Farms
Author: Richard Ambrose Hart
Publisher:
ISBN:
Category : Drainage
Languages : en
Pages : 32
Book Description
Publisher:
ISBN:
Category : Drainage
Languages : en
Pages : 32
Book Description
Agricultural Drainage Water Management in Arid and Semi-arid Areas
Author: Kenneth K. Tanji
Publisher: Food & Agriculture Organization of the UN (FAO)
ISBN:
Category : Science
Languages : en
Pages : 218
Book Description
This publication contains guidelines to sustain irrigated agriculture and protect water resources from the negative impacts of agricultural drainage water disposal. Using case studies from Central Asia, Egypt, India, Pakistan and the US, this study highlights four broad groups of drainage water management options and provides information to enable assessment of their impact and contribution towards development goals and to facilitate the preparation of drainage water management plans and designs. The options are: water conservation, drainage water re-use, drainage water disposal and drainage water treatment. The full texts of the case studies can be found on the attached CD-ROM.
Publisher: Food & Agriculture Organization of the UN (FAO)
ISBN:
Category : Science
Languages : en
Pages : 218
Book Description
This publication contains guidelines to sustain irrigated agriculture and protect water resources from the negative impacts of agricultural drainage water disposal. Using case studies from Central Asia, Egypt, India, Pakistan and the US, this study highlights four broad groups of drainage water management options and provides information to enable assessment of their impact and contribution towards development goals and to facilitate the preparation of drainage water management plans and designs. The options are: water conservation, drainage water re-use, drainage water disposal and drainage water treatment. The full texts of the case studies can be found on the attached CD-ROM.
Farm Drainage in the United States
Author: George A. Pavelis
Publisher:
ISBN:
Category : Drainage
Languages : en
Pages : 188
Book Description
Publisher:
ISBN:
Category : Drainage
Languages : en
Pages : 188
Book Description
Farm Irrigation
Author: Neil Southorn
Publisher: Butterworth-Heinemann
ISBN: 0080548652
Category : Technology & Engineering
Languages : en
Pages : 165
Book Description
There is no doubt that irrigation makes a major contribution to agricultural production, making a whole range of crops viable in an otherwise unreliable climate and helping insure against drought. However irrigation does not automatically guarantee a profit and acclaim, it is a high cost exercise, using water from increasingly scarce supplies, and contributes to environmental concerns of the community. Many of the pressures facing some irrigators have been caused by a lack of understanding in the past of best practices necessary in design, installation and management.Alternative methods of irrigation are presented, emphasising the characteristics of each that may make them suitable (or unsuitable) for particular situations. The range of crops under irrigation is very wide, and so too is the range of methods available to get water to them. Horticultural crops are included as well as broadacre crops. This section is followed by technical information of the various components that make up an irrigation system, and their installation.Irrigation is concerned with providing the optimum soil moisture conditions for plant growth. So to is drainage, in that too much water in the soil will retard growth. Many of the concepts surrounding irrigation are applicable to a consideration of drainage, so the book discusses that technology as well.
Publisher: Butterworth-Heinemann
ISBN: 0080548652
Category : Technology & Engineering
Languages : en
Pages : 165
Book Description
There is no doubt that irrigation makes a major contribution to agricultural production, making a whole range of crops viable in an otherwise unreliable climate and helping insure against drought. However irrigation does not automatically guarantee a profit and acclaim, it is a high cost exercise, using water from increasingly scarce supplies, and contributes to environmental concerns of the community. Many of the pressures facing some irrigators have been caused by a lack of understanding in the past of best practices necessary in design, installation and management.Alternative methods of irrigation are presented, emphasising the characteristics of each that may make them suitable (or unsuitable) for particular situations. The range of crops under irrigation is very wide, and so too is the range of methods available to get water to them. Horticultural crops are included as well as broadacre crops. This section is followed by technical information of the various components that make up an irrigation system, and their installation.Irrigation is concerned with providing the optimum soil moisture conditions for plant growth. So to is drainage, in that too much water in the soil will retard growth. Many of the concepts surrounding irrigation are applicable to a consideration of drainage, so the book discusses that technology as well.
Planning and Evaluation of Irrigation Projects
Author: Raveendra Kumar Rai
Publisher: Academic Press
ISBN: 0128118563
Category : Technology & Engineering
Languages : en
Pages : 680
Book Description
Planning and Evaluation of Irrigation Projects: Methods and Implementation presents the considerations, options and factors necessary for effective implementation of irrigation strategies, going further to provide methods for evaluating the efficiency of systems-in-place for remedial correction as needed. As the first book to take this lifecycle approach to agricultural irrigation, it includes real-world examples not only on natural resource availability concerns, but also on financial impacts and measurements. With 21 chapters divided into two sections, this book is a valuable resource for agricultural and hydrology engineers, conservation scientists and anyone seeking to implement and maintain irrigation systems. - Uses real-world examples to present practical insights - Incorporates both planning and evaluation for full-scope understanding and application - Illustrates both potential benefits and limitations of irrigation solutions - Provides potential means to increase crop productivity that can result in improved farm income
Publisher: Academic Press
ISBN: 0128118563
Category : Technology & Engineering
Languages : en
Pages : 680
Book Description
Planning and Evaluation of Irrigation Projects: Methods and Implementation presents the considerations, options and factors necessary for effective implementation of irrigation strategies, going further to provide methods for evaluating the efficiency of systems-in-place for remedial correction as needed. As the first book to take this lifecycle approach to agricultural irrigation, it includes real-world examples not only on natural resource availability concerns, but also on financial impacts and measurements. With 21 chapters divided into two sections, this book is a valuable resource for agricultural and hydrology engineers, conservation scientists and anyone seeking to implement and maintain irrigation systems. - Uses real-world examples to present practical insights - Incorporates both planning and evaluation for full-scope understanding and application - Illustrates both potential benefits and limitations of irrigation solutions - Provides potential means to increase crop productivity that can result in improved farm income