Author: Michael C. Flickinger
Publisher: John Wiley & Sons
ISBN: 111861898X
Category : Science
Languages : en
Pages : 884
Book Description
DOWNSTREAM INDUSTRIAL BIOTECHNOLOGY An affordable, easily accessible desk reference on biomanufacturing, focused on downstream recovery and purification Advances in the fundamental knowledge surrounding biotechnology, novel materials, and advanced engineering approaches continue to be translated into bioprocesses that bring new products to market at a significantly faster pace than most other industries. Industrial scale biotechnology and new manufacturing methods are revolutionizing medicine, environmental monitoring and remediation, consumer products, food production, agriculture, and forestry, and continue to be a major area of research. The downstream stage in industrial biotechnology refers to recovery, isolation, and purification of the microbial products from cell debris, processing medium and contaminating biomolecules from the upstream process into a finished product such as biopharmaceuticals and vaccines. Downstream process design has the greatest impact on overall biomanufacturing cost because not only does the biochemistry of different products ( e.g., peptides, proteins, hormones, antibiotics, and complex antigens) dictate different methods for the isolation and purification of these products, but contaminating byproducts can also reduce overall process yield, and may have serious consequences on clinical safety and efficacy. Therefore downstream separation scientists and engineers are continually seeking to eliminate, or combine, unit operations to minimize the number of process steps in order to maximize product recovery at a specified concentration and purity. Based on Wiley’s Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology, this volume features fifty articles that provide information on down- stream recovery of cells and protein capture; process development and facility design; equipment; PAT in downstream processes; downstream cGMP operations; and regulatory compliance. It covers: Cell wall disruption and lysis Cell recovery by centrifugation and filtration Large-scale protein chromatography Scale down of biopharmaceutical purification operations Lipopolysaccharide removal Porous media in biotechnology Equipment used in industrial protein purification Affinity chromatography Antibody purification, monoclonal and polyclonal Protein aggregation, precipitation and crystallization Freeze-drying of biopharmaceuticals Biopharmaceutical facility design and validation Pharmaceutical bioburden testing Regulatory requirements Ideal for graduate and advanced undergraduate courses on biomanufacturing, biochemical engineering, biopharmaceutical facility design, biochemistry, industrial microbiology, gene expression technology, and cell culture technology, Downstream Industrial Biotechnology is also a highly recommended resource for industry professionals and libraries.
Downstream Industrial Biotechnology
Author: Michael C. Flickinger
Publisher: John Wiley & Sons
ISBN: 111861898X
Category : Science
Languages : en
Pages : 884
Book Description
DOWNSTREAM INDUSTRIAL BIOTECHNOLOGY An affordable, easily accessible desk reference on biomanufacturing, focused on downstream recovery and purification Advances in the fundamental knowledge surrounding biotechnology, novel materials, and advanced engineering approaches continue to be translated into bioprocesses that bring new products to market at a significantly faster pace than most other industries. Industrial scale biotechnology and new manufacturing methods are revolutionizing medicine, environmental monitoring and remediation, consumer products, food production, agriculture, and forestry, and continue to be a major area of research. The downstream stage in industrial biotechnology refers to recovery, isolation, and purification of the microbial products from cell debris, processing medium and contaminating biomolecules from the upstream process into a finished product such as biopharmaceuticals and vaccines. Downstream process design has the greatest impact on overall biomanufacturing cost because not only does the biochemistry of different products ( e.g., peptides, proteins, hormones, antibiotics, and complex antigens) dictate different methods for the isolation and purification of these products, but contaminating byproducts can also reduce overall process yield, and may have serious consequences on clinical safety and efficacy. Therefore downstream separation scientists and engineers are continually seeking to eliminate, or combine, unit operations to minimize the number of process steps in order to maximize product recovery at a specified concentration and purity. Based on Wiley’s Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology, this volume features fifty articles that provide information on down- stream recovery of cells and protein capture; process development and facility design; equipment; PAT in downstream processes; downstream cGMP operations; and regulatory compliance. It covers: Cell wall disruption and lysis Cell recovery by centrifugation and filtration Large-scale protein chromatography Scale down of biopharmaceutical purification operations Lipopolysaccharide removal Porous media in biotechnology Equipment used in industrial protein purification Affinity chromatography Antibody purification, monoclonal and polyclonal Protein aggregation, precipitation and crystallization Freeze-drying of biopharmaceuticals Biopharmaceutical facility design and validation Pharmaceutical bioburden testing Regulatory requirements Ideal for graduate and advanced undergraduate courses on biomanufacturing, biochemical engineering, biopharmaceutical facility design, biochemistry, industrial microbiology, gene expression technology, and cell culture technology, Downstream Industrial Biotechnology is also a highly recommended resource for industry professionals and libraries.
Publisher: John Wiley & Sons
ISBN: 111861898X
Category : Science
Languages : en
Pages : 884
Book Description
DOWNSTREAM INDUSTRIAL BIOTECHNOLOGY An affordable, easily accessible desk reference on biomanufacturing, focused on downstream recovery and purification Advances in the fundamental knowledge surrounding biotechnology, novel materials, and advanced engineering approaches continue to be translated into bioprocesses that bring new products to market at a significantly faster pace than most other industries. Industrial scale biotechnology and new manufacturing methods are revolutionizing medicine, environmental monitoring and remediation, consumer products, food production, agriculture, and forestry, and continue to be a major area of research. The downstream stage in industrial biotechnology refers to recovery, isolation, and purification of the microbial products from cell debris, processing medium and contaminating biomolecules from the upstream process into a finished product such as biopharmaceuticals and vaccines. Downstream process design has the greatest impact on overall biomanufacturing cost because not only does the biochemistry of different products ( e.g., peptides, proteins, hormones, antibiotics, and complex antigens) dictate different methods for the isolation and purification of these products, but contaminating byproducts can also reduce overall process yield, and may have serious consequences on clinical safety and efficacy. Therefore downstream separation scientists and engineers are continually seeking to eliminate, or combine, unit operations to minimize the number of process steps in order to maximize product recovery at a specified concentration and purity. Based on Wiley’s Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology, this volume features fifty articles that provide information on down- stream recovery of cells and protein capture; process development and facility design; equipment; PAT in downstream processes; downstream cGMP operations; and regulatory compliance. It covers: Cell wall disruption and lysis Cell recovery by centrifugation and filtration Large-scale protein chromatography Scale down of biopharmaceutical purification operations Lipopolysaccharide removal Porous media in biotechnology Equipment used in industrial protein purification Affinity chromatography Antibody purification, monoclonal and polyclonal Protein aggregation, precipitation and crystallization Freeze-drying of biopharmaceuticals Biopharmaceutical facility design and validation Pharmaceutical bioburden testing Regulatory requirements Ideal for graduate and advanced undergraduate courses on biomanufacturing, biochemical engineering, biopharmaceutical facility design, biochemistry, industrial microbiology, gene expression technology, and cell culture technology, Downstream Industrial Biotechnology is also a highly recommended resource for industry professionals and libraries.
Downstream Processing of Proteins
Author: Mohamed A. Desai
Publisher: Springer Science & Business Media
ISBN: 1592590276
Category : Science
Languages : en
Pages : 233
Book Description
Considerable effort and time is allocated to introducing cell culture and fermentation technology to undergraduate students in academia, generally through a range of courses in industrial biotechnology and related disciplines. Similarly, a large number of textbooks are available to describe the appli- tions of these technologies in industry. However, there has been a general lack of appreciation of the significant developments in downstream processing and isolation technology, the need for which is largely driven by the stringent re- latory requirements for purity and quality of injectable biopharmaceuticals. This is particularly reflected by the general absence of coverage of this s- ject in many biotechnology and related courses in educational institutions. For a considerable while I have felt that there is increasing need for an introductory text to various aspects of downstream processing, particularly with respect to the needs of the biopharmaceutical and biotechnology ind- try. Although there are numerous texts that cover various aspects of protein purification techniques in isolation, there is a need for a work that covers the broad range of isolation technology in an industrial setting. It is anticipated that Downstream Processing of Proteins: Methods and Protocols will play a small part in filling this gap and thus prove a useful contribution to the field. It is also designed to encourage educational strategists to broaden the coverage of these topics in industrial biotechnology courses by including accounts of this important and rapidly developing element of the industrial process.
Publisher: Springer Science & Business Media
ISBN: 1592590276
Category : Science
Languages : en
Pages : 233
Book Description
Considerable effort and time is allocated to introducing cell culture and fermentation technology to undergraduate students in academia, generally through a range of courses in industrial biotechnology and related disciplines. Similarly, a large number of textbooks are available to describe the appli- tions of these technologies in industry. However, there has been a general lack of appreciation of the significant developments in downstream processing and isolation technology, the need for which is largely driven by the stringent re- latory requirements for purity and quality of injectable biopharmaceuticals. This is particularly reflected by the general absence of coverage of this s- ject in many biotechnology and related courses in educational institutions. For a considerable while I have felt that there is increasing need for an introductory text to various aspects of downstream processing, particularly with respect to the needs of the biopharmaceutical and biotechnology ind- try. Although there are numerous texts that cover various aspects of protein purification techniques in isolation, there is a need for a work that covers the broad range of isolation technology in an industrial setting. It is anticipated that Downstream Processing of Proteins: Methods and Protocols will play a small part in filling this gap and thus prove a useful contribution to the field. It is also designed to encourage educational strategists to broaden the coverage of these topics in industrial biotechnology courses by including accounts of this important and rapidly developing element of the industrial process.
Downstream Processing in Biotechnology
Author: Venko N. Beschkov
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311057411X
Category : Science
Languages : en
Pages : 177
Book Description
The current book gives an excellent insight into downstream processing technology and explains how to establish a successful strategy for an efficient recovery, isolation and purification of biosynthetic products. In addition to the overview of purification steps and unit operations, the authors provide practical information on capital and operating costs related to downstream processing.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311057411X
Category : Science
Languages : en
Pages : 177
Book Description
The current book gives an excellent insight into downstream processing technology and explains how to establish a successful strategy for an efficient recovery, isolation and purification of biosynthetic products. In addition to the overview of purification steps and unit operations, the authors provide practical information on capital and operating costs related to downstream processing.
Protein Chromatography
Author: Giorgio Carta
Publisher: John Wiley & Sons
ISBN: 352734666X
Category : Science
Languages : en
Pages : 440
Book Description
An all-in-one practical guide on how to efficiently use chromatographic separation methods Based on a training course that teaches the theoretical as well as practical aspects of protein bioseparation to bioprocess professionals, this fully updated and revised new edition offers comprehensive coverage of continuous chromatography and provides readers with many relevant examples from the biopharmaceutical industry. Divided into two large parts, Protein Chromatography: Process Development and Scale-Up, Second Edition presents all the necessary knowledge for effective process development in chromatographic bioseparation, both on small and large scale. The first part introduces chromatographic theory, including process design principles, to enable the reader to rationalize the set-up of a bioseparation process. The second part illustrates by way of case studies and sample protocols how the theory learned in the first part may be applied to real-life problems. Chapters look at: Downstream Processing of Biotechnology Products; Chromatography Media; Laboratory and Process Columns and Equipment; Adsorption Equilibrium; Rate Processes; and Dynamics of Chromatography Columns. The book closes with chapters on: Effects of Dispersion and Rate Processes on Column Performance; Gradient Elution Chromatography; and Chromatographic Column Design and Optimization. -Presents the most pertinent examples from the biopharmaceutical industry, including monoclonal antibodies -Provides an overview of the field along with design tools and examples illustrating the advantages of continuous processing in biopharmaceutical productions -Focuses on process development and large-scale bioseparation tasks, making it an ideal guide for the professional bioengineer in the biotech and pharma industries -Offers field-tested information based on decades of training courses for biotech and chemical engineers in Europe and the U.S. Protein Chromatography: Process Development and Scale-Up, Second Edition will appeal to biotechnologists, analytical chemists, chromatographers, chemical engineers, pharmaceutical industry, biotechnological industry, and biochemists.
Publisher: John Wiley & Sons
ISBN: 352734666X
Category : Science
Languages : en
Pages : 440
Book Description
An all-in-one practical guide on how to efficiently use chromatographic separation methods Based on a training course that teaches the theoretical as well as practical aspects of protein bioseparation to bioprocess professionals, this fully updated and revised new edition offers comprehensive coverage of continuous chromatography and provides readers with many relevant examples from the biopharmaceutical industry. Divided into two large parts, Protein Chromatography: Process Development and Scale-Up, Second Edition presents all the necessary knowledge for effective process development in chromatographic bioseparation, both on small and large scale. The first part introduces chromatographic theory, including process design principles, to enable the reader to rationalize the set-up of a bioseparation process. The second part illustrates by way of case studies and sample protocols how the theory learned in the first part may be applied to real-life problems. Chapters look at: Downstream Processing of Biotechnology Products; Chromatography Media; Laboratory and Process Columns and Equipment; Adsorption Equilibrium; Rate Processes; and Dynamics of Chromatography Columns. The book closes with chapters on: Effects of Dispersion and Rate Processes on Column Performance; Gradient Elution Chromatography; and Chromatographic Column Design and Optimization. -Presents the most pertinent examples from the biopharmaceutical industry, including monoclonal antibodies -Provides an overview of the field along with design tools and examples illustrating the advantages of continuous processing in biopharmaceutical productions -Focuses on process development and large-scale bioseparation tasks, making it an ideal guide for the professional bioengineer in the biotech and pharma industries -Offers field-tested information based on decades of training courses for biotech and chemical engineers in Europe and the U.S. Protein Chromatography: Process Development and Scale-Up, Second Edition will appeal to biotechnologists, analytical chemists, chromatographers, chemical engineers, pharmaceutical industry, biotechnological industry, and biochemists.
Downstream Process Technology: A New Horizon In Biotechnology
Author: Krishna Kant Prasad
Publisher: PHI Learning Pvt. Ltd.
ISBN: 812034040X
Category : Mathematics
Languages : en
Pages : 374
Book Description
Today, biochemical process industry demands fast and economic processes for the partitioning and purification of biomolecules that give high yield and high purity of the product. An integral and cost intensive part of these processes is associated with downstream processing for product isolation and purification. The aim of this comprehensive text is to provide an insightful overview of the whole aspects of downstream processing for biochemical product recovery. Intended for undergraduate and postgraduate students of biotechnology and chemical engineering, this self-contained text includes the chapters based on the recent developments in the industry and academics. It covers the importance of the downstream processing in terms of its relevancy to modern days ever-changing consumer needs, process design criteria relevance to set objectives, and physicochemical factors that help to formulate the strategy to develop a configuration among the raw material, methodology and instruments. This overview is followed by different downstream processing steps. The text concludes with the discussion on stabilization of the product to improve the shelf life of the product. Key Features Includes detailed biological, mathematical, chemical and physical aspects of downstream processing. Distinguishes downstream processing from analytical bioseparation. Contains numerous illustrations and solved problems.
Publisher: PHI Learning Pvt. Ltd.
ISBN: 812034040X
Category : Mathematics
Languages : en
Pages : 374
Book Description
Today, biochemical process industry demands fast and economic processes for the partitioning and purification of biomolecules that give high yield and high purity of the product. An integral and cost intensive part of these processes is associated with downstream processing for product isolation and purification. The aim of this comprehensive text is to provide an insightful overview of the whole aspects of downstream processing for biochemical product recovery. Intended for undergraduate and postgraduate students of biotechnology and chemical engineering, this self-contained text includes the chapters based on the recent developments in the industry and academics. It covers the importance of the downstream processing in terms of its relevancy to modern days ever-changing consumer needs, process design criteria relevance to set objectives, and physicochemical factors that help to formulate the strategy to develop a configuration among the raw material, methodology and instruments. This overview is followed by different downstream processing steps. The text concludes with the discussion on stabilization of the product to improve the shelf life of the product. Key Features Includes detailed biological, mathematical, chemical and physical aspects of downstream processing. Distinguishes downstream processing from analytical bioseparation. Contains numerous illustrations and solved problems.
Industrial Biotechnology
Author: Debabrata Das
Publisher: CRC Press
ISBN: 100038229X
Category : Science
Languages : en
Pages : 501
Book Description
Exposes readers to various biochemical industries Analyzes problems within biochemical processes Discusses stoichiometry of bioprocesses Covers upstream and downstream processing Offers a wealth of case studies of different biochemical production processes, including those in development of food products, vaccines and medicines, single cell proteins, amino acids, cheese, biodiesel, biopesticides, and more
Publisher: CRC Press
ISBN: 100038229X
Category : Science
Languages : en
Pages : 501
Book Description
Exposes readers to various biochemical industries Analyzes problems within biochemical processes Discusses stoichiometry of bioprocesses Covers upstream and downstream processing Offers a wealth of case studies of different biochemical production processes, including those in development of food products, vaccines and medicines, single cell proteins, amino acids, cheese, biodiesel, biopesticides, and more
Industrial Biotechnology
Author: Wim Soetaert
Publisher: John Wiley & Sons
ISBN: 3527630244
Category : Technology & Engineering
Languages : en
Pages : 522
Book Description
Describing all topics of white biotechnology admitted to the 7th EU Frame Programme and new industrial production processes aiming towards the Kyoto objectives, this comprehensive overview covers the technology, applications, economic potential and implications for society. Directed at readers with a general interest in a specific technology, this is equally suitable as an introductory handbook to a wide range of industries, including chemicals, biotechnology and pharmaceuticals, food and feed, paper and pulp, personal care, energy and agriculture.
Publisher: John Wiley & Sons
ISBN: 3527630244
Category : Technology & Engineering
Languages : en
Pages : 522
Book Description
Describing all topics of white biotechnology admitted to the 7th EU Frame Programme and new industrial production processes aiming towards the Kyoto objectives, this comprehensive overview covers the technology, applications, economic potential and implications for society. Directed at readers with a general interest in a specific technology, this is equally suitable as an introductory handbook to a wide range of industries, including chemicals, biotechnology and pharmaceuticals, food and feed, paper and pulp, personal care, energy and agriculture.
Handbook of Downstream Processing
Author: E. Goldberg
Publisher: Springer Science & Business Media
ISBN: 9400915632
Category : Science
Languages : en
Pages : 745
Book Description
The last two decades have seen a phenomenal growth of the field of genetic or biochemical engineering and have witnessed the development and ultimately marketing of a variety of products-typically through the manipulation and growth of different types of microorganisms, followed by the recovery and purification of the associated products. The engineers and biotechnologists who are involved in the full-scale process design of such facilities must be familiar with the variety of unit operations and equipment and the applicable regulatory requirements. This book describes current commercial practice and will be useful to those engineers working in this field in the design, construction and operation of pharmaceutical and biotechnology plants. It will be of help to the chemical or pharmaceutical engineer who is developing a plant design and who faces issues such as: Should the process be batch or continuous or a combination of batch and continuous? How should the optimum process design be developed? Should one employ a new revolutionary separation which could be potentially difficult to validate or use accepted technology which involves less risk? Should the process be run with ingredients formulated from water for injection, deionized water, or even filtered tap water? Should any of the separations be run in cold rooms or in glycol jacketed lines to minimize microbial growth where sterilization is not possible? Should the process equipment and lines be designed to be sterilized in-place, cleaned-in-place, or should every piece be broken down, cleaned and autoclaved after every turn?
Publisher: Springer Science & Business Media
ISBN: 9400915632
Category : Science
Languages : en
Pages : 745
Book Description
The last two decades have seen a phenomenal growth of the field of genetic or biochemical engineering and have witnessed the development and ultimately marketing of a variety of products-typically through the manipulation and growth of different types of microorganisms, followed by the recovery and purification of the associated products. The engineers and biotechnologists who are involved in the full-scale process design of such facilities must be familiar with the variety of unit operations and equipment and the applicable regulatory requirements. This book describes current commercial practice and will be useful to those engineers working in this field in the design, construction and operation of pharmaceutical and biotechnology plants. It will be of help to the chemical or pharmaceutical engineer who is developing a plant design and who faces issues such as: Should the process be batch or continuous or a combination of batch and continuous? How should the optimum process design be developed? Should one employ a new revolutionary separation which could be potentially difficult to validate or use accepted technology which involves less risk? Should the process be run with ingredients formulated from water for injection, deionized water, or even filtered tap water? Should any of the separations be run in cold rooms or in glycol jacketed lines to minimize microbial growth where sterilization is not possible? Should the process equipment and lines be designed to be sterilized in-place, cleaned-in-place, or should every piece be broken down, cleaned and autoclaved after every turn?
Biochemical Engineering and Biotechnology
Author: Ghasem Najafpour
Publisher: Elsevier
ISBN: 0444633774
Category : Technology & Engineering
Languages : en
Pages : 669
Book Description
Biochemical Engineering and Biotechnology, 2nd Edition, outlines the principles of biochemical processes and explains their use in the manufacturing of every day products. The author uses a diirect approach that should be very useful for students in following the concepts and practical applications. This book is unique in having many solved problems, case studies, examples and demonstrations of detailed experiments, with simple design equations and required calculations. - Covers major concepts of biochemical engineering and biotechnology, including applications in bioprocesses, fermentation technologies, enzymatic processes, and membrane separations, amongst others - Accessible to chemical engineering students who need to both learn, and apply, biological knowledge in engineering principals - Includes solved problems, examples, and demonstrations of detailed experiments with simple design equations and all required calculations - Offers many graphs that present actual experimental data, figures, and tables, along with explanations
Publisher: Elsevier
ISBN: 0444633774
Category : Technology & Engineering
Languages : en
Pages : 669
Book Description
Biochemical Engineering and Biotechnology, 2nd Edition, outlines the principles of biochemical processes and explains their use in the manufacturing of every day products. The author uses a diirect approach that should be very useful for students in following the concepts and practical applications. This book is unique in having many solved problems, case studies, examples and demonstrations of detailed experiments, with simple design equations and required calculations. - Covers major concepts of biochemical engineering and biotechnology, including applications in bioprocesses, fermentation technologies, enzymatic processes, and membrane separations, amongst others - Accessible to chemical engineering students who need to both learn, and apply, biological knowledge in engineering principals - Includes solved problems, examples, and demonstrations of detailed experiments with simple design equations and all required calculations - Offers many graphs that present actual experimental data, figures, and tables, along with explanations
Bioseparations Downstream Processing for Biotechnology
Author: Paul A. Belter
Publisher: Wiley-Interscience
ISBN: 9780471121138
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Offers a concise introduction to the separation and purification of biochemicals. Bridges two scientific cultures, providing an introduction to bioseparations for scientists with no background in engineering and for engineers with little grounding in biology. The authors supplement the ideas by simple worked examples, making the techniques of bioseparations easy to learn. Discusses removal of insolubles, product isolation, purification and polishing.
Publisher: Wiley-Interscience
ISBN: 9780471121138
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Offers a concise introduction to the separation and purification of biochemicals. Bridges two scientific cultures, providing an introduction to bioseparations for scientists with no background in engineering and for engineers with little grounding in biology. The authors supplement the ideas by simple worked examples, making the techniques of bioseparations easy to learn. Discusses removal of insolubles, product isolation, purification and polishing.