Machine Learning in Document Analysis and Recognition

Machine Learning in Document Analysis and Recognition PDF Author: Simone Marinai
Publisher: Springer Science & Business Media
ISBN: 3540762795
Category : Computers
Languages : en
Pages : 435

Get Book Here

Book Description
The objective of Document Analysis and Recognition (DAR) is to recognize the text and graphical components of a document and to extract information. This book is a collection of research papers and state-of-the-art reviews by leading researchers all over the world. It includes pointers to challenges and opportunities for future research directions. The main goal of the book is to identify good practices for the use of learning strategies in DAR.

Machine Learning in Document Analysis and Recognition

Machine Learning in Document Analysis and Recognition PDF Author: Simone Marinai
Publisher: Springer Science & Business Media
ISBN: 3540762795
Category : Computers
Languages : en
Pages : 435

Get Book Here

Book Description
The objective of Document Analysis and Recognition (DAR) is to recognize the text and graphical components of a document and to extract information. This book is a collection of research papers and state-of-the-art reviews by leading researchers all over the world. It includes pointers to challenges and opportunities for future research directions. The main goal of the book is to identify good practices for the use of learning strategies in DAR.

Machine Learning in Document Analysis and Recognition

Machine Learning in Document Analysis and Recognition PDF Author: Simone Marinai
Publisher: Springer
ISBN: 3540762809
Category : Technology & Engineering
Languages : en
Pages : 436

Get Book Here

Book Description
The objective of Document Analysis and Recognition (DAR) is to recognize the text and graphical components of a document and to extract information. This book is a collection of research papers and state-of-the-art reviews by leading researchers all over the world. It includes pointers to challenges and opportunities for future research directions. The main goal of the book is to identify good practices for the use of learning strategies in DAR.

Handbook Of Character Recognition And Document Image Analysis

Handbook Of Character Recognition And Document Image Analysis PDF Author: Horst Bunke
Publisher: World Scientific
ISBN: 9814500380
Category : Computers
Languages : en
Pages : 851

Get Book Here

Book Description
Optical character recognition and document image analysis have become very important areas with a fast growing number of researchers in the field. This comprehensive handbook with contributions by eminent experts, presents both the theoretical and practical aspects at an introductory level wherever possible.

Document Analysis Systems

Document Analysis Systems PDF Author: Xiang Bai
Publisher: Springer Nature
ISBN: 3030570584
Category : Computers
Languages : en
Pages : 588

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 14th IAPR International Workshop on Document Analysis Systems, DAS 2020, held in Wuhan, China, in July 2020. The 40 full papers presented in this book were carefully reviewed and selected from 57 submissions. The papers are grouped in the following topical sections: character and text recognition; document image processing; segmentation and layout analysis; word embedding and spotting; text detection; and font design and classification. Due to the Corona pandemic the conference was held as a virtual event .

Handbook Of Pattern Recognition And Computer Vision (2nd Edition)

Handbook Of Pattern Recognition And Computer Vision (2nd Edition) PDF Author: Chi Hau Chen
Publisher: World Scientific
ISBN: 9814497649
Category : Computers
Languages : en
Pages : 1045

Get Book Here

Book Description
The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.

Document Analysis And Text Recognition: Benchmarking State-of-the-art Systems

Document Analysis And Text Recognition: Benchmarking State-of-the-art Systems PDF Author: Volker Margner
Publisher: World Scientific
ISBN: 9813229284
Category : Computers
Languages : en
Pages : 303

Get Book Here

Book Description
The compendium presents the latest results of the most prominent competitions held in the field of Document Analysis and Text Recognition. It includes a description of the participating systems and the underlying methods on one hand and the datasets used together with evaluation metrics on the other hand. This volume also demonstrates with examples, how to organize a competition and how to make it successful. It will be an indispensable handbook to the document image analysis community.

Handwritten Historical Document Analysis, Recognition, and Retrieval - State of the Art and Future Trends

Handwritten Historical Document Analysis, Recognition, and Retrieval - State of the Art and Future Trends PDF Author: Andreas Fischer
Publisher: Machine Perception and Artific
ISBN: 9789811203237
Category : Computers
Languages : en
Pages : 240

Get Book Here

Book Description
In recent years, libraries and archives all around the world have increased their efforts to digitize historical manuscripts. To integrate the manuscripts into digital libraries, pattern recognition and machine learning methods are needed to extract and index the contents of the scanned images. The unique compendium describes the outcome of the HisDoc research project, a pioneering attempt to study the whole processing chain of layout analysis, handwriting recognition, and retrieval of historical manuscripts. This description is complemented with an overview of other related research projects, in order to convey the current state of the art in the field and outline future trends. This must-have volume is a relevant reference work for librarians, archivists and computer scientists.

Document Image Analysis

Document Image Analysis PDF Author: K.C. Santosh
Publisher: Springer
ISBN: 9811323399
Category : Computers
Languages : en
Pages : 184

Get Book Here

Book Description
The book focuses on one of the key issues in document image processing – graphical symbol recognition, which is a sub-field of the larger research domain of pattern recognition. It covers several approaches: statistical, structural and syntactic, and discusses their merits and demerits considering the context. Through comprehensive experiments, it also explores whether these approaches can be combined. The book presents research problems, state-of-the-art methods that convey basic steps as well as prominent techniques, evaluation metrics and protocols, and research standpoints/directions that are associated with it. However, it is not limited to straightforward isolated graphics (visual patterns) recognition; it also addresses complex and composite graphical symbols recognition, which is motivated by real-world industrial problems.

Document Image Analysis

Document Image Analysis PDF Author: Horst Bunke
Publisher: World Scientific
ISBN: 9810220464
Category : Computers
Languages : en
Pages : 282

Get Book Here

Book Description
Interest in the automatic processing and analysis of document images has been rapidly increasing during the past few years. This book addresses the different subfields of document image analysis, including preprocessing and segmentation, form processing, handwriting recognition, line drawing and map processing, and contextual processing.

Character Recognition Systems

Character Recognition Systems PDF Author: Mohamed Cheriet
Publisher: John Wiley & Sons
ISBN: 9780470176528
Category : Technology & Engineering
Languages : en
Pages : 351

Get Book Here

Book Description
"Much of pattern recognition theory and practice, including methods such as Support Vector Machines, has emerged in an attempt to solve the character recognition problem. This book is written by very well-known academics who have worked in the field for many years and have made significant and lasting contributions. The book will no doubt be of value to students and practitioners." -Sargur N. Srihari, SUNY Distinguished Professor, Department of Computer Science and Engineering, and Director, Center of Excellence for Document Analysis and Recognition (CEDAR), University at Buffalo, The State University of New York "The disciplines of optical character recognition and document image analysis have a history of more than forty years. In the last decade, the importance and popularity of these areas have grown enormously. Surprisingly, however, the field is not well covered by any textbook. This book has been written by prominent leaders in the field. It includes all important topics in optical character recognition and document analysis, and is written in a very coherent and comprehensive style. This book satisfies an urgent need. It is a volume the community has been awaiting for a long time, and I can enthusiastically recommend it to everybody working in the area." -Horst Bunke, Professor, Institute of Computer Science and Applied Mathematics (IAM), University of Bern, Switzerland In Character Recognition Systems, the authors provide practitioners and students with the fundamental principles and state-of-the-art computational methods of reading printed texts and handwritten materials. The information presented is analogous to the stages of a computer recognition system, helping readers master the theory and latest methodologies used in character recognition in a meaningful way. This book covers: * Perspectives on the history, applications, and evolution of Optical Character Recognition (OCR) * The most widely used pre-processing techniques, as well as methods for extracting character contours and skeletons * Evaluating extracted features, both structural and statistical * Modern classification methods that are successful in character recognition, including statistical methods, Artificial Neural Networks (ANN), Support Vector Machines (SVM), structural methods, and multi-classifier methods * An overview of word and string recognition methods and techniques * Case studies that illustrate practical applications, with descriptions of the methods and theories behind the experimental results Each chapter contains major steps and tricks to handle the tasks described at-hand. Researchers and graduate students in computer science and engineering will find this book useful for designing a concrete system in OCR technology, while practitioners will rely on it as a valuable resource for the latest advances and modern technologies that aren't covered elsewhere in a single book.