Author: Alexander I. Saichev
Publisher: Springer
ISBN: 3319979582
Category : Mathematics
Languages : en
Pages : 347
Book Description
Distributions in the Physical and Engineering Sciences is a comprehensive exposition on analytic methods for solving science and engineering problems which is written from the unifying viewpoint of distribution theory and enriched with many modern topics which are important to practitioners and researchers. The goal of the book is to give the reader, specialist and non-specialist usable and modern mathematical tools in their research and analysis. This new text is intended for graduate students and researchers in applied mathematics, physical sciences and engineering. The careful explanations, accessible writing style, and many illustrations/examples also make it suitable for use as a self-study reference by anyone seeking greater understanding and proficiency in the problem solving methods presented. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise. The present, softcover reprint is designed to make this classic textbook available to a wider audience.
Distributions in the Physical and Engineering Sciences, Volume 1
Distributions in the Physical and Engineering Sciences: Distributional and fractal calculus, integral transforms, and wavelets
Author: A. I. Saichev
Publisher:
ISBN: 9783764339241
Category : Theory of distributions (Functional analysis)
Languages : en
Pages : 336
Book Description
Distributions in the Physical and Engineering Sciences is a comprehensive exposition on analytic methods for solving science and engineering problems. It is written from the unifying viewpoint of distribution theory and enriched with many modern topics which are important for practitioners and researchers. The goal of the books is to give the reader, specialist and non-specialist, useable and modern mathematical tools in their research and analysis. This new text is intended for graduate students and researchers in applied mathematics, physical sciences and engineering. The careful explanations, accessible writing style, and many illustrations/examples also make it suitable for use as a self-study reference by anyone seeking greater understanding and proficiency in problem solving methods presented. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise.
Publisher:
ISBN: 9783764339241
Category : Theory of distributions (Functional analysis)
Languages : en
Pages : 336
Book Description
Distributions in the Physical and Engineering Sciences is a comprehensive exposition on analytic methods for solving science and engineering problems. It is written from the unifying viewpoint of distribution theory and enriched with many modern topics which are important for practitioners and researchers. The goal of the books is to give the reader, specialist and non-specialist, useable and modern mathematical tools in their research and analysis. This new text is intended for graduate students and researchers in applied mathematics, physical sciences and engineering. The careful explanations, accessible writing style, and many illustrations/examples also make it suitable for use as a self-study reference by anyone seeking greater understanding and proficiency in problem solving methods presented. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise.
Distributions in the Physical and Engineering Sciences
Author: Alexander I. Saichev
Publisher: Birkhäuser
ISBN: 9780817639242
Category : Mathematics
Languages : en
Pages : 0
Book Description
A comprehensive exposition on analytic methods for solving science and engineering problems, written from the unifying viewpoint of distribution theory and enriched with many modern topics which are important to practioners and researchers. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise.
Publisher: Birkhäuser
ISBN: 9780817639242
Category : Mathematics
Languages : en
Pages : 0
Book Description
A comprehensive exposition on analytic methods for solving science and engineering problems, written from the unifying viewpoint of distribution theory and enriched with many modern topics which are important to practioners and researchers. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise.
Distributions in the Physical and Engineering Sciences, Volume 2
Author: Alexander I. Saichev
Publisher: Springer Science & Business Media
ISBN: 0817646523
Category : Mathematics
Languages : en
Pages : 427
Book Description
Distributions in the Physical and Engineering Sciences is a comprehensive exposition on analytic methods for solving science and engineering problems. It is written from the unifying viewpoint of distribution theory and enriched with many modern topics which are important for practitioners and researchers. The goal of the books is to give the reader, specialist and non-specialist, useable and modern mathematical tools in their research and analysis. Volume 2: Linear and Nonlinear Dynamics of Continuous Media continues the multivolume project which endeavors to show how the theory of distributions, also called the theory of generalized functions, can be used by graduate students and researchers in applied mathematics, physical sciences, and engineering. It contains an analysis of the three basic types of linear partial differential equations--elliptic, parabolic, and hyperbolic--as well as chapters on first-order nonlinear partial differential equations and conservation laws, and generalized solutions of first-order nonlinear PDEs. Nonlinear wave, growing interface, and Burger’s equations, KdV equations, and the equations of gas dynamics and porous media are also covered. The careful explanations, accessible writing style, many illustrations/examples and solutions also make it suitable for use as a self-study reference by anyone seeking greater understanding and proficiency in the problem solving methods presented. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise. Features · Application oriented exposition of distributional (Dirac delta) methods in the theory of partial differential equations. Abstract formalism is keep to a minimum. · Careful and rich selection of examples and problems arising in real-life situations. Complete solutions to all exercises appear at the end of the book. · Clear explanations, motivations, and illustration of all necessary mathematical concepts.
Publisher: Springer Science & Business Media
ISBN: 0817646523
Category : Mathematics
Languages : en
Pages : 427
Book Description
Distributions in the Physical and Engineering Sciences is a comprehensive exposition on analytic methods for solving science and engineering problems. It is written from the unifying viewpoint of distribution theory and enriched with many modern topics which are important for practitioners and researchers. The goal of the books is to give the reader, specialist and non-specialist, useable and modern mathematical tools in their research and analysis. Volume 2: Linear and Nonlinear Dynamics of Continuous Media continues the multivolume project which endeavors to show how the theory of distributions, also called the theory of generalized functions, can be used by graduate students and researchers in applied mathematics, physical sciences, and engineering. It contains an analysis of the three basic types of linear partial differential equations--elliptic, parabolic, and hyperbolic--as well as chapters on first-order nonlinear partial differential equations and conservation laws, and generalized solutions of first-order nonlinear PDEs. Nonlinear wave, growing interface, and Burger’s equations, KdV equations, and the equations of gas dynamics and porous media are also covered. The careful explanations, accessible writing style, many illustrations/examples and solutions also make it suitable for use as a self-study reference by anyone seeking greater understanding and proficiency in the problem solving methods presented. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise. Features · Application oriented exposition of distributional (Dirac delta) methods in the theory of partial differential equations. Abstract formalism is keep to a minimum. · Careful and rich selection of examples and problems arising in real-life situations. Complete solutions to all exercises appear at the end of the book. · Clear explanations, motivations, and illustration of all necessary mathematical concepts.
Distributions in the Physical and Engineering Sciences
Author: Aleksandr I. Saichev
Publisher:
ISBN: 9781461241591
Category :
Languages : en
Pages : 360
Book Description
Publisher:
ISBN: 9781461241591
Category :
Languages : en
Pages : 360
Book Description
A First Course in Statistics for Signal Analysis
Author: Wojbor A. Woyczynski
Publisher: Springer Science & Business Media
ISBN: 0817681019
Category : Mathematics
Languages : en
Pages : 271
Book Description
This self-contained and user-friendly textbook is designed for a first, one-semester course in statistical signal analysis for a broad audience of students in engineering and the physical sciences. The emphasis throughout is on fundamental concepts and relationships in the statistical theory of stationary random signals, which are explained in a concise, yet rigorous presentation. With abundant practice exercises and thorough explanations, A First Course in Statistics for Signal Analysis is an excellent tool for both teaching students and training laboratory scientists and engineers. Improvements in the second edition include considerably expanded sections, enhanced precision, and more illustrative figures.
Publisher: Springer Science & Business Media
ISBN: 0817681019
Category : Mathematics
Languages : en
Pages : 271
Book Description
This self-contained and user-friendly textbook is designed for a first, one-semester course in statistical signal analysis for a broad audience of students in engineering and the physical sciences. The emphasis throughout is on fundamental concepts and relationships in the statistical theory of stationary random signals, which are explained in a concise, yet rigorous presentation. With abundant practice exercises and thorough explanations, A First Course in Statistics for Signal Analysis is an excellent tool for both teaching students and training laboratory scientists and engineers. Improvements in the second edition include considerably expanded sections, enhanced precision, and more illustrative figures.
Distributions in the Physical and Engineering Sciences, Volume 3
Author: Alexander I. Saichev
Publisher: Birkhäuser
ISBN: 3319925865
Category : Mathematics
Languages : en
Pages : 413
Book Description
Continuing the authors’ multivolume project, this text considers the theory of distributions from an applied perspective, demonstrating how effective a combination of analytic and probabilistic methods can be for solving problems in the physical and engineering sciences. Volume 1 covered foundational topics such as distributional and fractional calculus, the integral transform, and wavelets, and Volume 2 explored linear and nonlinear dynamics in continuous media. With this volume, the scope is extended to the use of distributional tools in the theory of generalized stochastic processes and fields, and in anomalous fractional random dynamics. Chapters cover topics such as probability distributions; generalized stochastic processes, Brownian motion, and the white noise; stochastic differential equations and generalized random fields; Burgers turbulence and passive tracer transport in Burgers flows; and linear, nonlinear, and multiscale anomalous fractional dynamics in continuous media. The needs of the applied-sciences audience are addressed by a careful and rich selection of examples arising in real-life industrial and scientific labs and a thorough discussion of their physical significance. Numerous illustrations generate a better understanding of the core concepts discussed in the text, and a large number of exercises at the end of each chapter expand on these concepts. Distributions in the Physical and Engineering Sciences is intended to fill a gap in the typical undergraduate engineering/physical sciences curricula, and as such it will be a valuable resource for researchers and graduate students working in these areas. The only prerequisites are a three-four semester calculus sequence (including ordinary differential equations, Fourier series, complex variables, and linear algebra), and some probability theory, but basic definitions and facts are covered as needed. An appendix also provides background material concerning the Dirac-delta and other distributions.
Publisher: Birkhäuser
ISBN: 3319925865
Category : Mathematics
Languages : en
Pages : 413
Book Description
Continuing the authors’ multivolume project, this text considers the theory of distributions from an applied perspective, demonstrating how effective a combination of analytic and probabilistic methods can be for solving problems in the physical and engineering sciences. Volume 1 covered foundational topics such as distributional and fractional calculus, the integral transform, and wavelets, and Volume 2 explored linear and nonlinear dynamics in continuous media. With this volume, the scope is extended to the use of distributional tools in the theory of generalized stochastic processes and fields, and in anomalous fractional random dynamics. Chapters cover topics such as probability distributions; generalized stochastic processes, Brownian motion, and the white noise; stochastic differential equations and generalized random fields; Burgers turbulence and passive tracer transport in Burgers flows; and linear, nonlinear, and multiscale anomalous fractional dynamics in continuous media. The needs of the applied-sciences audience are addressed by a careful and rich selection of examples arising in real-life industrial and scientific labs and a thorough discussion of their physical significance. Numerous illustrations generate a better understanding of the core concepts discussed in the text, and a large number of exercises at the end of each chapter expand on these concepts. Distributions in the Physical and Engineering Sciences is intended to fill a gap in the typical undergraduate engineering/physical sciences curricula, and as such it will be a valuable resource for researchers and graduate students working in these areas. The only prerequisites are a three-four semester calculus sequence (including ordinary differential equations, Fourier series, complex variables, and linear algebra), and some probability theory, but basic definitions and facts are covered as needed. An appendix also provides background material concerning the Dirac-delta and other distributions.
Lévy Processes
Author: Ole E Barndorff-Nielsen
Publisher: Springer Science & Business Media
ISBN: 1461201977
Category : Mathematics
Languages : en
Pages : 414
Book Description
A Lévy process is a continuous-time analogue of a random walk, and as such, is at the cradle of modern theories of stochastic processes. Martingales, Markov processes, and diffusions are extensions and generalizations of these processes. In the past, representatives of the Lévy class were considered most useful for applications to either Brownian motion or the Poisson process. Nowadays the need for modeling jumps, bursts, extremes and other irregular behavior of phenomena in nature and society has led to a renaissance of the theory of general Lévy processes. Researchers and practitioners in fields as diverse as physics, meteorology, statistics, insurance, and finance have rediscovered the simplicity of Lévy processes and their enormous flexibility in modeling tails, dependence and path behavior. This volume, with an excellent introductory preface, describes the state-of-the-art of this rapidly evolving subject with special emphasis on the non-Brownian world. Leading experts present surveys of recent developments, or focus on some most promising applications. Despite its special character, every topic is aimed at the non- specialist, keen on learning about the new exciting face of a rather aged class of processes. An extensive bibliography at the end of each article makes this an invaluable comprehensive reference text. For the researcher and graduate student, every article contains open problems and points out directions for futurearch. The accessible nature of the work makes this an ideal introductory text for graduate seminars in applied probability, stochastic processes, physics, finance, and telecommunications, and a unique guide to the world of Lévy processes.
Publisher: Springer Science & Business Media
ISBN: 1461201977
Category : Mathematics
Languages : en
Pages : 414
Book Description
A Lévy process is a continuous-time analogue of a random walk, and as such, is at the cradle of modern theories of stochastic processes. Martingales, Markov processes, and diffusions are extensions and generalizations of these processes. In the past, representatives of the Lévy class were considered most useful for applications to either Brownian motion or the Poisson process. Nowadays the need for modeling jumps, bursts, extremes and other irregular behavior of phenomena in nature and society has led to a renaissance of the theory of general Lévy processes. Researchers and practitioners in fields as diverse as physics, meteorology, statistics, insurance, and finance have rediscovered the simplicity of Lévy processes and their enormous flexibility in modeling tails, dependence and path behavior. This volume, with an excellent introductory preface, describes the state-of-the-art of this rapidly evolving subject with special emphasis on the non-Brownian world. Leading experts present surveys of recent developments, or focus on some most promising applications. Despite its special character, every topic is aimed at the non- specialist, keen on learning about the new exciting face of a rather aged class of processes. An extensive bibliography at the end of each article makes this an invaluable comprehensive reference text. For the researcher and graduate student, every article contains open problems and points out directions for futurearch. The accessible nature of the work makes this an ideal introductory text for graduate seminars in applied probability, stochastic processes, physics, finance, and telecommunications, and a unique guide to the world of Lévy processes.
Lecture Notes on the Mathematics of Acoustics
Author: Matthew C. M. Wright
Publisher: World Scientific
ISBN: 1860944965
Category : Science
Languages : en
Pages : 310
Book Description
Based on lectures given at a one week summer school held at the University of Southampton, July 2003.
Publisher: World Scientific
ISBN: 1860944965
Category : Science
Languages : en
Pages : 310
Book Description
Based on lectures given at a one week summer school held at the University of Southampton, July 2003.
Diffusion Processes, Jump Processes, and Stochastic Differential Equations
Author: Wojbor A. Woyczyński
Publisher: CRC Press
ISBN: 1000475352
Category : Mathematics
Languages : en
Pages : 138
Book Description
Diffusion Processes, Jump Processes, and Stochastic Differential Equations provides a compact exposition of the results explaining interrelations between diffusion stochastic processes, stochastic differential equations and the fractional infinitesimal operators. The draft of this book has been extensively classroom tested by the author at Case Western Reserve University in a course that enrolled seniors and graduate students majoring in mathematics, statistics, engineering, physics, chemistry, economics and mathematical finance. The last topic proved to be particularly popular among students looking for careers on Wall Street and in research organizations devoted to financial problems. Features Quickly and concisely builds from basic probability theory to advanced topics Suitable as a primary text for an advanced course in diffusion processes and stochastic differential equations Useful as supplementary reading across a range of topics.
Publisher: CRC Press
ISBN: 1000475352
Category : Mathematics
Languages : en
Pages : 138
Book Description
Diffusion Processes, Jump Processes, and Stochastic Differential Equations provides a compact exposition of the results explaining interrelations between diffusion stochastic processes, stochastic differential equations and the fractional infinitesimal operators. The draft of this book has been extensively classroom tested by the author at Case Western Reserve University in a course that enrolled seniors and graduate students majoring in mathematics, statistics, engineering, physics, chemistry, economics and mathematical finance. The last topic proved to be particularly popular among students looking for careers on Wall Street and in research organizations devoted to financial problems. Features Quickly and concisely builds from basic probability theory to advanced topics Suitable as a primary text for an advanced course in diffusion processes and stochastic differential equations Useful as supplementary reading across a range of topics.