Disease Mapping with WinBUGS and MLwiN

Disease Mapping with WinBUGS and MLwiN PDF Author: Andrew B. Lawson
Publisher: John Wiley & Sons
ISBN: 9780470856048
Category : Mathematics
Languages : en
Pages : 304

Get Book Here

Book Description
Disease mapping involves the analysis of geo-referenced disease incidence data and has many applications, for example within resource allocation, cluster alarm analysis, and ecological studies. There is a real need amongst public health workers for simpler and more efficient tools for the analysis of geo-referenced disease incidence data. Bayesian and multilevel methods provide the required efficiency, and with the emergence of software packages – such as WinBUGS and MLwiN – are now easy to implement in practice. Provides an introduction to Bayesian and multilevel modelling in disease mapping. Adopts a practical approach, with many detailed worked examples. Includes introductory material on WinBUGS and MLwiN. Discusses three applications in detail – relative risk estimation, focused clustering, and ecological analysis. Suitable for public health workers and epidemiologists with a sound statistical knowledge. Supported by a Website featuring data sets and WinBUGS and MLwiN programs. Disease Mapping with WinBUGS and MLwiN provides a practical introduction to the use of software for disease mapping for researchers, practitioners and graduate students from statistics, public health and epidemiology who analyse disease incidence data.

Disease Mapping with WinBUGS and MLwiN

Disease Mapping with WinBUGS and MLwiN PDF Author: Andrew B. Lawson
Publisher: John Wiley & Sons
ISBN: 9780470856048
Category : Mathematics
Languages : en
Pages : 304

Get Book Here

Book Description
Disease mapping involves the analysis of geo-referenced disease incidence data and has many applications, for example within resource allocation, cluster alarm analysis, and ecological studies. There is a real need amongst public health workers for simpler and more efficient tools for the analysis of geo-referenced disease incidence data. Bayesian and multilevel methods provide the required efficiency, and with the emergence of software packages – such as WinBUGS and MLwiN – are now easy to implement in practice. Provides an introduction to Bayesian and multilevel modelling in disease mapping. Adopts a practical approach, with many detailed worked examples. Includes introductory material on WinBUGS and MLwiN. Discusses three applications in detail – relative risk estimation, focused clustering, and ecological analysis. Suitable for public health workers and epidemiologists with a sound statistical knowledge. Supported by a Website featuring data sets and WinBUGS and MLwiN programs. Disease Mapping with WinBUGS and MLwiN provides a practical introduction to the use of software for disease mapping for researchers, practitioners and graduate students from statistics, public health and epidemiology who analyse disease incidence data.

Disease Mapping

Disease Mapping PDF Author: Miguel A. Martinez-Beneito
Publisher: CRC Press
ISBN: 1482246422
Category : Mathematics
Languages : en
Pages : 447

Get Book Here

Book Description
Disease Mapping: From Foundations to Multidimensional Modeling guides the reader from the basics of disease mapping to the most advanced topics in this field. A multidimensional framework is offered that makes possible the joint modeling of several risks patterns corresponding to combinations of several factors, including age group, time period, disease, etc. Although theory will be covered, the applied component will be equally as important with lots of practical examples offered. Features: Discusses the very latest developments on multivariate and multidimensional mapping. Gives a single state-of-the-art framework that unifies most of the previously proposed disease mapping approaches. Balances epidemiological and statistical points-of-view. Requires no previous knowledge of disease mapping. Includes practical sessions at the end of each chapter with WinBUGs/INLA and real world datasets. Supplies R code for the examples in the book so that they can be reproduced by the reader. About the Authors: Miguel A. Martinez Beneito has spent his whole career working as a statistician for public health services, first at the epidemiology unit of the Valencia (Spain) regional health administration and later as a researcher at the public health division of FISABIO, a regional bio-sanitary research center. He has been also the Bayesian Hierarchical Models professor for several seasons at the University of Valencia Biostatics Master. Paloma Botella Rocamora has spent most of her professional career in academia although she now works as a statistician for the epidemiology unit of the Valencia regional health administration. Most of her research has been devoted to developing and applying disease mapping models to real data, although her work as a statistician in an epidemiology unit makes her develop and apply statistical methods to health data, in general.

Bayesian Disease Mapping

Bayesian Disease Mapping PDF Author: Andrew B. Lawson
Publisher: CRC Press
ISBN: 1466504811
Category : Mathematics
Languages : en
Pages : 398

Get Book Here

Book Description
Since the publication of the first edition, many new Bayesian tools and methods have been developed for space-time data analysis, the predictive modeling of health outcomes, and other spatial biostatistical areas. Exploring these new developments, Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Second Edition provides an up-to-date, cohesive account of the full range of Bayesian disease mapping methods and applications. A biostatistics professor and WHO advisor, the author illustrates the use of Bayesian hierarchical modeling in the geographical analysis of disease through a range of real-world datasets. New to the Second Edition Three new chapters on regression and ecological analysis, putative hazard modeling, and disease map surveillance Expanded material on case event modeling and spatiotemporal analysis New and updated examples Two new appendices featuring examples of integrated nested Laplace approximation (INLA) and conditional autoregressive (CAR) models In addition to these new topics, the book covers more conventional areas such as relative risk estimation, clustering, spatial survival analysis, and longitudinal analysis. After an introduction to Bayesian inference, computation, and model assessment, the text focuses on important themes, including disease map reconstruction, cluster detection, regression and ecological analysis, putative hazard modeling, analysis of multiple scales and multiple diseases, spatial survival and longitudinal studies, spatiotemporal methods, and map surveillance. It shows how Bayesian disease mapping can yield significant insights into georeferenced health data. WinBUGS and R are used throughout for data manipulation and simulation.

Applied Spatial Data Analysis with R

Applied Spatial Data Analysis with R PDF Author: Roger S. Bivand
Publisher: Springer Science & Business Media
ISBN: 1461476186
Category : Medical
Languages : en
Pages : 414

Get Book Here

Book Description
Applied Spatial Data Analysis with R, second edition, is divided into two basic parts, the first presenting R packages, functions, classes and methods for handling spatial data. This part is of interest to users who need to access and visualise spatial data. Data import and export for many file formats for spatial data are covered in detail, as is the interface between R and the open source GRASS GIS and the handling of spatio-temporal data. The second part showcases more specialised kinds of spatial data analysis, including spatial point pattern analysis, interpolation and geostatistics, areal data analysis and disease mapping. The coverage of methods of spatial data analysis ranges from standard techniques to new developments, and the examples used are largely taken from the spatial statistics literature. All the examples can be run using R contributed packages available from the CRAN website, with code and additional data sets from the book's own website. Compared to the first edition, the second edition covers the more systematic approach towards handling spatial data in R, as well as a number of important and widely used CRAN packages that have appeared since the first edition. This book will be of interest to researchers who intend to use R to handle, visualise, and analyse spatial data. It will also be of interest to spatial data analysts who do not use R, but who are interested in practical aspects of implementing software for spatial data analysis. It is a suitable companion book for introductory spatial statistics courses and for applied methods courses in a wide range of subjects using spatial data, including human and physical geography, geographical information science and geoinformatics, the environmental sciences, ecology, public health and disease control, economics, public administration and political science. The book has a website where complete code examples, data sets, and other support material may be found: http://www.asdar-book.org. The authors have taken part in writing and maintaining software for spatial data handling and analysis with R in concert since 2003.

Statistics and the Evaluation of Evidence for Forensic Scientists

Statistics and the Evaluation of Evidence for Forensic Scientists PDF Author: Colin Aitken
Publisher: John Wiley & Sons
ISBN: 1119245222
Category : Mathematics
Languages : en
Pages : 1251

Get Book Here

Book Description
Statistics and the Evaluation of Evidence for Forensic Scientists The leading resource in the statistical evaluation and interpretation of forensic evidence The third edition of Statistics and the Evaluation of Evidence for Forensic Scientists is fully updated to provide the latest research and developments in the use of statistical techniques to evaluate and interpret evidence. Courts are increasingly aware of the importance of proper evidence assessment when there is an element of uncertainty. Because of the increasing availability of data, the role of statistical and probabilistic reasoning is gaining a higher profile in criminal cases. That’s why lawyers, forensic scientists, graduate students, and researchers will find this book an essential resource, one which explores how forensic evidence can be evaluated and interpreted statistically. It’s written as an accessible source of information for all those with an interest in the evaluation and interpretation of forensic scientific evidence. Discusses the entire chain of reasoning–from evidence pre-assessment to court presentation; Includes material for the understanding of evidence interpretation for single and multiple trace evidence; Provides real examples and data for improved understanding. Since the first edition of this book was published in 1995, this respected series has remained a leading resource in the statistical evaluation of forensic evidence. It shares knowledge from authors in the fields of statistics and forensic science who are international experts in the area of evidence evaluation and interpretation. This book helps people to deal with uncertainty related to scientific evidence and propositions. It introduces a method of reasoning that shows how to update beliefs coherently and to act rationally. In this edition, readers can find new information on the topics of elicitation, subjective probabilities, decision analysis, and cognitive bias, all discussed in a Bayesian framework.

Simulation Techniques in Financial Risk Management

Simulation Techniques in Financial Risk Management PDF Author: Ngai Hang Chan
Publisher: John Wiley & Sons
ISBN: 1118735994
Category : Mathematics
Languages : en
Pages : 227

Get Book Here

Book Description
Praise for the First Edition “...a nice, self-contained introduction to simulation and computational techniques in finance...” – Mathematical Reviews Simulation Techniques in Financial Risk Management, Second Edition takes a unique approach to the field of simulations by focusing on techniques necessary in the fields of finance and risk management. Thoroughly updated, the new edition expands on several key topics in these areas and presents many of the recent innovations in simulations and risk management, such as advanced option pricing models beyond the Black–Scholes paradigm, interest rate models, MCMC methods including stochastic volatility models simulations, model assets and model-free properties, jump diffusion, and state space modeling. The Second Edition also features: Updates to primary software used throughout the book, Microsoft Office® Excel® VBA New topical coverage on multiple assets, model-free properties, and related models More than 300 exercises at the end of each chapter, with select answers in the appendix, to help readers apply new concepts and test their understanding Extensive use of examples to illustrate how to use simulation techniques in risk management Practical case studies, such as the pricing of exotic options; simulations of Greeks in hedging; and the use of Bayesian ideas to assess the impact of jumps, so readers can reproduce the results of the studies A related website with additional solutions to problems within the book as well as Excel VBA and S-Plus computer code for many of the examples within the book Simulation Techniques in Financial Risk Management, Second Edition is an invaluable resource for risk managers in the financial and actuarial industries as well as a useful reference for readers interested in learning how to better gauge risk and make more informed decisions. The book is also ideal for upper-undergraduate and graduate-level courses in simulation and risk management.

Data Monitoring Committees in Clinical Trials

Data Monitoring Committees in Clinical Trials PDF Author: Susan S. Ellenberg
Publisher: John Wiley & Sons
ISBN: 1119512646
Category : Medical
Languages : en
Pages : 494

Get Book Here

Book Description
The authoritative guide for Data Monitoring Committees—fully revised and updated The number of clinical trials sponsored by government agencies and pharmaceutical companies has grown in recent years, prompting an increased need for interim monitoring of data on safety and efficacy. Data Monitoring Committees (DMCs) are an essential component of many clinical trials, safeguarding trial participants and protecting the credibility and validity of the study. Data Monitoring Committees in Clinical Trials: A Practical Perspective, 2nd Edition offers practical advice for those managing and conducting clinical trials and serving on Data Monitoring Committees, providing a practical overview of the establishment, purpose, and responsibilities of these committees. Examination of topics such as the composition and independence of DMCs, statistical, philosophical and ethical considerations, and determining when a DMC is needed, presents readers with a comprehensive foundational knowledge of clinical trial oversight. Providing recent examples to illustrate DMC principles, this fully-updated guide reflects current developments and practices in clinical trial oversight and offers expanded coverage of emerging issues and challenges in the field. This new second edition covers the most current information on DMC policies, issues in monitoring trials using new designs, and recent trial publications relevant to DMC decision-making. • Presents practical advice for those managing and conducting clinical trials and serving on Data Monitoring Committees • Illustrates the types of challenging issues Data Monitoring Committees face in practical situations • Provides updated and expanded coverage of topics including regulatory and funding agency guidelines and trial designs and their associated demands and limitations • Includes a new chapter addressing legal issues that affect DMC members and discusses general litigation concerns relevant to clinical research • Expands treatment of current journal publications addressing DMC issues Data Monitoring Committees in Clinical Trials: A Practical Perspective, 2nd Edition is a must-have text for anyone engaged in DMC activities as well as trial sponsors, clinical trial researchers, regulatory and bioethics professionals, and those associated with clinical trials in academic, government and industry settings.

Statistical Methods for Trend Detection and Analysis in the Environmental Sciences

Statistical Methods for Trend Detection and Analysis in the Environmental Sciences PDF Author: Richard Chandler
Publisher: John Wiley & Sons
ISBN: 111999196X
Category : Mathematics
Languages : en
Pages : 348

Get Book Here

Book Description
The need to understand and quantify change is fundamental throughout the environmental sciences. This might involve describing past variation, understanding the mechanisms underlying observed changes, making projections of possible future change, or monitoring the effect of intervening in some environmental system. This book provides an overview of modern statistical techniques that may be relevant in problems of this nature. Practitioners studying environmental change will be familiar with many classical statistical procedures for the detection and estimation of trends. However, the ever increasing capacity to collect and process vast amounts of environmental information has led to growing awareness that such procedures are limited in the insights that they can deliver. At the same time, significant developments in statistical methodology have often been widely dispersed in the statistical literature and have therefore received limited exposure in the environmental science community. This book aims to provide a thorough but accessible review of these developments. It is split into two parts: the first provides an introduction to this area and the second part presents a collection of case studies illustrating the practical application of modern statistical approaches to the analysis of trends in real studies. Key Features: Presents a thorough introduction to the practical application and methodology of trend analysis in environmental science. Explores non-parametric estimation and testing as well as parametric techniques. Methods are illustrated using case studies from a variety of environmental application areas. Looks at trends in all aspects of a process including mean, percentiles and extremes. Supported by an accompanying website featuring datasets and R code. The book is designed to be accessible to readers with some basic statistical training, but also contains sufficient detail to serve as a reference for practising statisticians. It will therefore be of use to postgraduate students and researchers both in the environmental sciences and in statistics.

Statistical Practice in Business and Industry

Statistical Practice in Business and Industry PDF Author: Shirley Coleman
Publisher: John Wiley & Sons
ISBN: 0470997478
Category : Mathematics
Languages : en
Pages : 450

Get Book Here

Book Description
This book covers all the latest advances, as well as more established methods, in the application of statistical and optimisation methods within modern industry. These include applications from a range of industries that include micro-electronics, chemical, automotive, engineering, food, component assembly, household goods and plastics. Methods range from basic graphical approaches to generalised modelling, from designed experiments to process control. Solutions cover produce and process design, through manufacture to packaging and delivery, from single responses to multivariate problems.

Network Meta-Analysis for Decision-Making

Network Meta-Analysis for Decision-Making PDF Author: Sofia Dias
Publisher: John Wiley & Sons
ISBN: 1118647505
Category : Mathematics
Languages : en
Pages : 484

Get Book Here

Book Description
A practical guide to network meta-analysis with examples and code In the evaluation of healthcare, rigorous methods of quantitative assessment are necessary to establish which interventions are effective and cost-effective. Often a single study will not provide the answers and it is desirable to synthesise evidence from multiple sources, usually randomised controlled trials. This book takes an approach to evidence synthesis that is specifically intended for decision making when there are two or more treatment alternatives being evaluated, and assumes that the purpose of every synthesis is to answer the question "for this pre-identified population of patients, which treatment is 'best'?" A comprehensive, coherent framework for network meta-analysis (mixed treatment comparisons) is adopted and estimated using Bayesian Markov Chain Monte Carlo methods implemented in the freely available software WinBUGS. Each chapter contains worked examples, exercises, solutions and code that may be adapted by readers to apply to their own analyses. This book can be used as an introduction to evidence synthesis and network meta-analysis, its key properties and policy implications. Examples and advanced methods are also presented for the more experienced reader. Methods used throughout this book can be applied consistently: model critique and checking for evidence consistency are emphasised. Methods are based on technical support documents produced for NICE Decision Support Unit, which support the NICE Methods of Technology Appraisal. Code presented is also the basis for the code used by the ISPOR Task Force on Indirect Comparisons. Includes extensive carefully worked examples, with thorough explanations of how to set out data for use in WinBUGS and how to interpret the output. Network Meta-Analysis for Decision Making will be of interest to decision makers, medical statisticians, health economists, and anyone involved in Health Technology Assessment including the pharmaceutical industry.