Discrete Probability and Algorithms

Discrete Probability and Algorithms PDF Author: David Aldous
Publisher: Springer Science & Business Media
ISBN: 1461208017
Category : Mathematics
Languages : en
Pages : 169

Get Book Here

Book Description
Discrete probability theory and the theory of algorithms have become close partners over the last ten years, though the roots of this partnership go back much longer. The papers in this volume address the latest developments in this active field. They are from the IMA Workshops "Probability and Algorithms" and "The Finite Markov Chain Renaissance." They represent the current thinking of many of the world's leading experts in the field. Researchers and graduate students in probability, computer science, combinatorics, and optimization theory will all be interested in this collection of articles. The techniques developed and surveyed in this volume are still undergoing rapid development, and many of the articles of the collection offer an expositionally pleasant entree into a research area of growing importance.

Discrete Probability and Algorithms

Discrete Probability and Algorithms PDF Author: David Aldous
Publisher: Springer Science & Business Media
ISBN: 1461208017
Category : Mathematics
Languages : en
Pages : 169

Get Book Here

Book Description
Discrete probability theory and the theory of algorithms have become close partners over the last ten years, though the roots of this partnership go back much longer. The papers in this volume address the latest developments in this active field. They are from the IMA Workshops "Probability and Algorithms" and "The Finite Markov Chain Renaissance." They represent the current thinking of many of the world's leading experts in the field. Researchers and graduate students in probability, computer science, combinatorics, and optimization theory will all be interested in this collection of articles. The techniques developed and surveyed in this volume are still undergoing rapid development, and many of the articles of the collection offer an expositionally pleasant entree into a research area of growing importance.

Probability and Computing

Probability and Computing PDF Author: Michael Mitzenmacher
Publisher: Cambridge University Press
ISBN: 9780521835404
Category : Computers
Languages : en
Pages : 372

Get Book Here

Book Description
Randomization and probabilistic techniques play an important role in modern computer science, with applications ranging from combinatorial optimization and machine learning to communication networks and secure protocols. This 2005 textbook is designed to accompany a one- or two-semester course for advanced undergraduates or beginning graduate students in computer science and applied mathematics. It gives an excellent introduction to the probabilistic techniques and paradigms used in the development of probabilistic algorithms and analyses. It assumes only an elementary background in discrete mathematics and gives a rigorous yet accessible treatment of the material, with numerous examples and applications. The first half of the book covers core material, including random sampling, expectations, Markov's inequality, Chevyshev's inequality, Chernoff bounds, the probabilistic method and Markov chains. The second half covers more advanced topics such as continuous probability, applications of limited independence, entropy, Markov chain Monte Carlo methods and balanced allocations. With its comprehensive selection of topics, along with many examples and exercises, this book is an indispensable teaching tool.

Probabilistic Methods for Algorithmic Discrete Mathematics

Probabilistic Methods for Algorithmic Discrete Mathematics PDF Author: Michel Habib
Publisher: Springer Science & Business Media
ISBN: 3662127881
Category : Mathematics
Languages : en
Pages : 342

Get Book Here

Book Description
Leave nothing to chance. This cliche embodies the common belief that ran domness has no place in carefully planned methodologies, every step should be spelled out, each i dotted and each t crossed. In discrete mathematics at least, nothing could be further from the truth. Introducing random choices into algorithms can improve their performance. The application of proba bilistic tools has led to the resolution of combinatorial problems which had resisted attack for decades. The chapters in this volume explore and celebrate this fact. Our intention was to bring together, for the first time, accessible discus sions of the disparate ways in which probabilistic ideas are enriching discrete mathematics. These discussions are aimed at mathematicians with a good combinatorial background but require only a passing acquaintance with the basic definitions in probability (e.g. expected value, conditional probability). A reader who already has a firm grasp on the area will be interested in the original research, novel syntheses, and discussions of ongoing developments scattered throughout the book. Some of the most convincing demonstrations of the power of these tech niques are randomized algorithms for estimating quantities which are hard to compute exactly. One example is the randomized algorithm of Dyer, Frieze and Kannan for estimating the volume of a polyhedron. To illustrate these techniques, we consider a simple related problem. Suppose S is some region of the unit square defined by a system of polynomial inequalities: Pi (x. y) ~ o.

Computational Probability

Computational Probability PDF Author: John H. Drew
Publisher: Springer
ISBN: 3319433237
Category : Business & Economics
Languages : en
Pages : 336

Get Book Here

Book Description
This new edition includes the latest advances and developments in computational probability involving A Probability Programming Language (APPL). The book examines and presents, in a systematic manner, computational probability methods that encompass data structures and algorithms. The developed techniques address problems that require exact probability calculations, many of which have been considered intractable in the past. The book addresses the plight of the probabilist by providing algorithms to perform calculations associated with random variables. Computational Probability: Algorithms and Applications in the Mathematical Sciences, 2nd Edition begins with an introductory chapter that contains short examples involving the elementary use of APPL. Chapter 2 reviews the Maple data structures and functions necessary to implement APPL. This is followed by a discussion of the development of the data structures and algorithms (Chapters 3–6 for continuous random variables and Chapters 7–9 for discrete random variables) used in APPL. The book concludes with Chapters 10–15 introducing a sampling of various applications in the mathematical sciences. This book should appeal to researchers in the mathematical sciences with an interest in applied probability and instructors using the book for a special topics course in computational probability taught in a mathematics, statistics, operations research, management science, or industrial engineering department.

Computational Probability

Computational Probability PDF Author: John H. Drew
Publisher: Springer Science & Business Media
ISBN: 0387746765
Category : Mathematics
Languages : en
Pages : 220

Get Book Here

Book Description
This title organizes computational probability methods into a systematic treatment. The book examines two categories of problems. "Algorithms for Continuous Random Variables" covers data structures and algorithms, transformations of random variables, and products of independent random variables. "Algorithms for Discrete Random Variables" discusses data structures and algorithms, sums of independent random variables, and order statistics.

Discrete Probability Models and Methods

Discrete Probability Models and Methods PDF Author: Pierre Brémaud
Publisher: Springer
ISBN: 3319434764
Category : Mathematics
Languages : en
Pages : 561

Get Book Here

Book Description
The emphasis in this book is placed on general models (Markov chains, random fields, random graphs), universal methods (the probabilistic method, the coupling method, the Stein-Chen method, martingale methods, the method of types) and versatile tools (Chernoff's bound, Hoeffding's inequality, Holley's inequality) whose domain of application extends far beyond the present text. Although the examples treated in the book relate to the possible applications, in the communication and computing sciences, in operations research and in physics, this book is in the first instance concerned with theory. The level of the book is that of a beginning graduate course. It is self-contained, the prerequisites consisting merely of basic calculus (series) and basic linear algebra (matrices). The reader is not assumed to be trained in probability since the first chapters give in considerable detail the background necessary to understand the rest of the book.

Algorithms from THE BOOK

Algorithms from THE BOOK PDF Author: Kenneth Lange
Publisher: SIAM
ISBN: 1611976170
Category : Mathematics
Languages : en
Pages : 227

Get Book Here

Book Description
Algorithms are a dominant force in modern culture, and every indication is that they will become more pervasive, not less. The best algorithms are undergirded by beautiful mathematics. This text cuts across discipline boundaries to highlight some of the most famous and successful algorithms. Readers are exposed to the principles behind these examples and guided in assembling complex algorithms from simpler building blocks. Written in clear, instructive language within the constraints of mathematical rigor, Algorithms from THE BOOK includes a large number of classroom-tested exercises at the end of each chapter. The appendices cover background material often omitted from undergraduate courses. Most of the algorithm descriptions are accompanied by Julia code, an ideal language for scientific computing. This code is immediately available for experimentation. Algorithms from THE BOOK is aimed at first-year graduate and advanced undergraduate students. It will also serve as a convenient reference for professionals throughout the mathematical sciences, physical sciences, engineering, and the quantitative sectors of the biological and social sciences.

Practical Discrete Mathematics

Practical Discrete Mathematics PDF Author: Ryan T. White
Publisher: Packt Publishing Ltd
ISBN: 1838983503
Category : Mathematics
Languages : en
Pages : 330

Get Book Here

Book Description
A practical guide simplifying discrete math for curious minds and demonstrating its application in solving problems related to software development, computer algorithms, and data science Key FeaturesApply the math of countable objects to practical problems in computer scienceExplore modern Python libraries such as scikit-learn, NumPy, and SciPy for performing mathematicsLearn complex statistical and mathematical concepts with the help of hands-on examples and expert guidanceBook Description Discrete mathematics deals with studying countable, distinct elements, and its principles are widely used in building algorithms for computer science and data science. The knowledge of discrete math concepts will help you understand the algorithms, binary, and general mathematics that sit at the core of data-driven tasks. Practical Discrete Mathematics is a comprehensive introduction for those who are new to the mathematics of countable objects. This book will help you get up to speed with using discrete math principles to take your computer science skills to a more advanced level. As you learn the language of discrete mathematics, you'll also cover methods crucial to studying and describing computer science and machine learning objects and algorithms. The chapters that follow will guide you through how memory and CPUs work. In addition to this, you'll understand how to analyze data for useful patterns, before finally exploring how to apply math concepts in network routing, web searching, and data science. By the end of this book, you'll have a deeper understanding of discrete math and its applications in computer science, and be ready to work on real-world algorithm development and machine learning. What you will learnUnderstand the terminology and methods in discrete math and their usage in algorithms and data problemsUse Boolean algebra in formal logic and elementary control structuresImplement combinatorics to measure computational complexity and manage memory allocationUse random variables, calculate descriptive statistics, and find average-case computational complexitySolve graph problems involved in routing, pathfinding, and graph searches, such as depth-first searchPerform ML tasks such as data visualization, regression, and dimensionality reductionWho this book is for This book is for computer scientists looking to expand their knowledge of discrete math, the core topic of their field. University students looking to get hands-on with computer science, mathematics, statistics, engineering, or related disciplines will also find this book useful. Basic Python programming skills and knowledge of elementary real-number algebra are required to get started with this book.

Algorithms and Discrete Applied Mathematics

Algorithms and Discrete Applied Mathematics PDF Author: Apurva Mudgal
Publisher: Springer Nature
ISBN: 3030678997
Category : Computers
Languages : en
Pages : 519

Get Book Here

Book Description
This book constitutes the proceedings of the 7th International Conference on Algorithms and Discrete Applied Mathematics, CALDAM 2021, which was held in Rupnagar, India, during February 11-13, 2021. The 39 papers presented in this volume were carefully reviewed and selected from 82 submissions. The papers were organized in topical sections named: approximation algorithms; parameterized algorithms; computational geometry; graph theory; combinatorics and algorithms; graph algorithms; and computational complexity.

Introduction to Probability

Introduction to Probability PDF Author: Charles Miller Grinstead
Publisher: American Mathematical Soc.
ISBN: 0821894145
Category : Mathematics
Languages : en
Pages : 530

Get Book Here

Book Description
This text is designed for an introductory probability course at the university level for sophomores, juniors, and seniors in mathematics, physical and social sciences, engineering, and computer science. It presents a thorough treatment of ideas and techniques necessary for a firm understanding of the subject.