Discrete Geometry and Symmetry

Discrete Geometry and Symmetry PDF Author: Marston D. E. Conder
Publisher: Springer
ISBN: 331978434X
Category : Mathematics
Languages : en
Pages : 349

Get Book Here

Book Description
This book consists of contributions from experts, presenting a fruitful interplay between different approaches to discrete geometry. Most of the chapters were collected at the conference “Geometry and Symmetry” in Veszprém, Hungary from 29 June to 3 July 2015. The conference was dedicated to Károly Bezdek and Egon Schulte on the occasion of their 60th birthdays, acknowledging their highly regarded contributions in these fields. While the classical problems of discrete geometry have a strong connection to geometric analysis, coding theory, symmetry groups, and number theory, their connection to combinatorics and optimization has become of particular importance. The last decades have seen a revival of interest in discrete geometric structures and their symmetry. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory and geometry, combinatorial group theory, and hyperbolic geometry and topology. This book contains papers on new developments in these areas, including convex and abstract polytopes and their recent generalizations, tiling and packing, zonotopes, isoperimetric inequalities, and on the geometric and combinatorial aspects of linear optimization. The book is a valuable resource for researchers, both junior and senior, in the field of discrete geometry, combinatorics, or discrete optimization. Graduate students find state-of-the-art surveys and an open problem collection.

Discrete Geometry and Symmetry

Discrete Geometry and Symmetry PDF Author: Marston D. E. Conder
Publisher: Springer
ISBN: 331978434X
Category : Mathematics
Languages : en
Pages : 349

Get Book Here

Book Description
This book consists of contributions from experts, presenting a fruitful interplay between different approaches to discrete geometry. Most of the chapters were collected at the conference “Geometry and Symmetry” in Veszprém, Hungary from 29 June to 3 July 2015. The conference was dedicated to Károly Bezdek and Egon Schulte on the occasion of their 60th birthdays, acknowledging their highly regarded contributions in these fields. While the classical problems of discrete geometry have a strong connection to geometric analysis, coding theory, symmetry groups, and number theory, their connection to combinatorics and optimization has become of particular importance. The last decades have seen a revival of interest in discrete geometric structures and their symmetry. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory and geometry, combinatorial group theory, and hyperbolic geometry and topology. This book contains papers on new developments in these areas, including convex and abstract polytopes and their recent generalizations, tiling and packing, zonotopes, isoperimetric inequalities, and on the geometric and combinatorial aspects of linear optimization. The book is a valuable resource for researchers, both junior and senior, in the field of discrete geometry, combinatorics, or discrete optimization. Graduate students find state-of-the-art surveys and an open problem collection.

Discrete Geometry and Symmetry

Discrete Geometry and Symmetry PDF Author: Isla Harvey
Publisher: States Academic Press
ISBN: 9781639897438
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
Discrete geometry refers to a subfield of geometry that examines discrete and highly symmetric structures in geometry and how discrete geometric objects might be constructed. It is closely connected to computational geometry as well as other mathematical subjects including combinatorial geometry and topology, combinatorial optimization, geometric graph theory, and finite geometry. Discrete geometry focuses on the problems that aim to characterize specific discrete arrangements of geometric objects having high symmetry. Many of the techniques used to investigate discrete arrangements are based on a wide range of symetrizations. Discrete geometry is used in numerous theoretical disciplines including algebraic geometry and topology, geometry of numbers, mathematical physics, functional analysis, geometric measure theory, calculus of variations, and group theory. This book is compiled in such a manner, that it will provide an in-depth knowledge about the theory and applications of discrete geometry and symmetry. It is a resource guide for experts as well as students.

Discrete Mathematics and Symmetry

Discrete Mathematics and Symmetry PDF Author: Angel Garrido
Publisher: MDPI
ISBN: 3039281909
Category : Mathematics
Languages : en
Pages : 458

Get Book Here

Book Description
Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group.

Rigidity and Symmetry

Rigidity and Symmetry PDF Author: Robert Connelly
Publisher: Springer
ISBN: 1493907816
Category : Mathematics
Languages : en
Pages : 378

Get Book Here

Book Description
This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures and to explore the interaction of geometry, algebra and combinatorics. Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme. The volume will be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and graduate levels, as well as post docs, structural engineers and chemists.

Polytopes and Discrete Geometry

Polytopes and Discrete Geometry PDF Author: Gabriel Cunningham
Publisher: American Mathematical Soc.
ISBN: 1470448971
Category : Education
Languages : en
Pages : 272

Get Book Here

Book Description
The papers showcase the breadth of discrete geometry through many new methods and results in a variety of topics. Also included are survey articles on some important areas of active research. This volume is aimed at researchers in discrete and convex geometry and researchers who work with abstract polytopes or string C C-groups. It is also aimed at early career mathematicians, including graduate students and postdoctoral fellows, to give them a glimpse of the variety and beauty of these research areas. Topics covered in this volume include: the combinatorics, geometry, and symmetries of convex polytopes; tilings; discrete point sets; the combinatorics of Eulerian posets and interval posets; symmetries of surfaces and maps on surfaces; self-dual polytopes; string C C-groups; hypertopes; and graph coloring.

Discrete Geometry

Discrete Geometry PDF Author: Andras Bezdek
Publisher: CRC Press
ISBN: 0824747615
Category : Mathematics
Languages : en
Pages : 500

Get Book Here

Book Description
Celebrating the work of Professor W. Kuperberg, this reference explores packing and covering theory, tilings, combinatorial and computational geometry, and convexity, featuring an extensive collection of problems compiled at the Discrete Geometry Special Session of the American Mathematical Society in New Orleans, Louisiana. Discrete Geometry analyzes packings and coverings with congruent convex bodies , arrangements on the sphere, line transversals, Euclidean and spherical tilings, geometric graphs, polygons and polyhedra, and fixing systems for convex figures. This text also offers research and contributions from more than 50 esteemed international authorities, making it a valuable addition to any mathematical library.

Discrete Mathematics and Symmetry

Discrete Mathematics and Symmetry PDF Author: Angel Garrido
Publisher:
ISBN: 9783039281916
Category : Mathematics
Languages : en
Pages : 458

Get Book Here

Book Description
Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group.

Handbook of Discrete and Computational Geometry

Handbook of Discrete and Computational Geometry PDF Author: Csaba D. Toth
Publisher: CRC Press
ISBN: 1351645919
Category : Computers
Languages : en
Pages : 2354

Get Book Here

Book Description
The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.

Handbook of Discrete and Computational Geometry

Handbook of Discrete and Computational Geometry PDF Author: Csaba D. Toth
Publisher: CRC Press
ISBN: 9780849385247
Category : Mathematics
Languages : en
Pages : 1008

Get Book Here

Book Description
Jacob E. Goodman, co-founder and editor of Discrete & Computational Geometry, the preeminent journal on this area in the international mathematics and computer science community, joins forces with the distinguished computer scientist Joseph O'Rourke and other well-known authorities to produce the definitive handbook on these two interrelated fields. Over the past decade or so, researchers and professionals in discrete geometry and the newer field of computational geometry have developed a highly productive collaborative relationship, where each area benefits from the methods and insights of the other. At the same time that discrete and computational geometry are becoming more closely identified, applications of the results of this work are being used in an increasing number of widely differing areas, from computer graphics and linear programming to manufacturing and robotics. The authors have answered the need for a comprehensive handbook for workers in these and related fields, and for other users of the body of results. While much information can be found on discrete and computational geometry, it is scattered among many sources, and individual books and articles are often narrowly focused. Handbook of Discrete and Computational Geometry brings together, for the first time, all of the major results in both these fields into one volume. Thousands of results - theorems, algorithms, and tables - throughout the volume definitively cover the field, while numerous applications from many different fields demonstrate practical usage. The material is presented clearly enough to assist the novice, but in enough depth to appeal to the specialist. Every technical term is clearly defined in an easy-to-use glossary. Over 200 figures illustrate the concepts presented and provide supporting examples. Information on current geometric software - what it does, how efficiently it does it, and where to find it - is also included.

Classical Topics in Discrete Geometry

Classical Topics in Discrete Geometry PDF Author: Károly Bezdek
Publisher: Springer Science & Business Media
ISBN: 1441906002
Category : Mathematics
Languages : en
Pages : 171

Get Book Here

Book Description
Geometry is a classical core part of mathematics which, with its birth, marked the beginning of the mathematical sciences. Thus, not surprisingly, geometry has played a key role in many important developments of mathematics in the past, as well as in present times. While focusing on modern mathematics, one has to emphasize the increasing role of discrete mathematics, or equivalently, the broad movement to establish discrete analogues of major components of mathematics. In this way, the works of a number of outstanding mathema- cians including H. S. M. Coxeter (Canada), C. A. Rogers (United Kingdom), and L. Fejes-T oth (Hungary) led to the new and fast developing eld called discrete geometry. One can brie y describe this branch of geometry as the study of discrete arrangements of geometric objects in Euclidean, as well as in non-Euclidean spaces. This, as a classical core part, also includes the theory of polytopes and tilings in addition to the theory of packing and covering. D- crete geometry is driven by problems often featuring a very clear visual and applied character. The solutions use a variety of methods of modern mat- matics, including convex and combinatorial geometry, coding theory, calculus of variations, di erential geometry, group theory, and topology, as well as geometric analysis and number theory.