Discrete Discriminant Analysis

Discrete Discriminant Analysis PDF Author: Matthew Goldstein
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 206

Get Book Here

Book Description
The linear discriminant function; Discrete classification models; Error rates and the problem of bias; The variable-selection problem; Special topics; Computer programs.

Discrete Discriminant Analysis

Discrete Discriminant Analysis PDF Author: Matthew Goldstein
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 206

Get Book Here

Book Description
The linear discriminant function; Discrete classification models; Error rates and the problem of bias; The variable-selection problem; Special topics; Computer programs.

Discrete Data Analysis with R

Discrete Data Analysis with R PDF Author: Michael Friendly
Publisher: CRC Press
ISBN: 1498725864
Category : Mathematics
Languages : en
Pages : 700

Get Book Here

Book Description
An Applied Treatment of Modern Graphical Methods for Analyzing Categorical DataDiscrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data presents an applied treatment of modern methods for the analysis of categorical data, both discrete response data and frequency data. It explains how to use graphical meth

Statistics for Marketing and Consumer Research

Statistics for Marketing and Consumer Research PDF Author: Mario Mazzocchi
Publisher: SAGE
ISBN: 1446204014
Category : Business & Economics
Languages : en
Pages : 433

Get Book Here

Book Description
Balancing simplicity with technical rigour, this practical guide to the statistical techniques essential to research in marketing and related fields, describes each method as well as showing how they are applied. The book is accompanied by two real data sets to replicate examples and with exercises to solve, as well as detailed guidance on the use of appropriate software including: - 750 powerpoint slides with lecture notes and step-by-step guides to run analyses in SPSS (also includes screenshots) - 136 multiple choice questions for tests This is augmented by in-depth discussion of topics including: - Sampling - Data management and statistical packages - Hypothesis testing - Cluster analysis - Structural equation modelling

Discriminant Analysis

Discriminant Analysis PDF Author: William R. Klecka
Publisher: SAGE
ISBN: 9780803914919
Category : Reference
Languages : en
Pages : 76

Get Book Here

Book Description
Background. Deriving the canonical discriminant functions. Interpreting the canonical discriminant functions. Classification procedures. Stepwise inclusion of variables. Concluding remarks.

Statistical Pattern Recognition

Statistical Pattern Recognition PDF Author: Andrew R. Webb
Publisher: Newnes
ISBN: 9780340741641
Category : Computers
Languages : en
Pages : 476

Get Book Here

Book Description
"This book provides an introduction to statistical pattern recognition theory and techniques. Most of the material presented in this book is concerned with discrimination and classification and has been drawn from a wide range of literature including that of engineering, statistics, computer science and the social sciences. This book is an attempt to provide a concise volume containing descriptions of many of the most useful of today's pattern processing techniques including many of the recent advances in nonparametric approaches to discrimination developed in the statistics literature and elsewhere. The techniques are illustrated with examples of real-world applications studies. Pointers are also provided to the diverse literature base where further details on applications, comparative studies and theoretical developments may be obtained"--Page [xv].

An Introduction to Applied Multivariate Analysis with R

An Introduction to Applied Multivariate Analysis with R PDF Author: Brian Everitt
Publisher: Springer Science & Business Media
ISBN: 1441996508
Category : Mathematics
Languages : en
Pages : 284

Get Book Here

Book Description
The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.

Multivariate Statistics for Wildlife and Ecology Research

Multivariate Statistics for Wildlife and Ecology Research PDF Author: Kevin McGarigal
Publisher: Springer Science & Business Media
ISBN: 146121288X
Category : Science
Languages : en
Pages : 293

Get Book Here

Book Description
With its focus on the practical application of the techniques of multivariate statistics, this book shapes the powerful tools of statistics for the specific needs of ecologists and makes statistics more applicable to their course of study. It gives readers a solid conceptual understanding of the role of multivariate statistics in ecological applications and the relationships among various techniques, while avoiding detailed mathematics and the underlying theory. More importantly, the reader will gain insight into the type of research questions best handled by each technique and the important considerations in applying them. Whether used as a textbook for specialised courses or as a supplement to general statistics texts, the book emphasises those techniques that students of ecology and natural resources most need to understand and employ in their research. While targeted for upper-division and graduate students in wildlife biology, forestry, and ecology, and for professional wildlife scientists and natural resource managers, this book will also be valuable to researchers in any of the biological sciences.

Digital Signal Processing and Statistical Classification

Digital Signal Processing and Statistical Classification PDF Author: George J. Miao
Publisher: Artech House
ISBN: 9781580531351
Category : Mathematics
Languages : en
Pages : 522

Get Book Here

Book Description
This is the first book to introduce and integrate advanced digital signal processing (DSP) and classification together, and the only volume to introduce state-of-the-art transforms including DFT, FFT, DCT, DHT, PCT, CDT, and ODT together for DSP and communication applications. You get step-by-step guidance in discrete-time domain signal processing and frequency domain signal analysis; digital filter design and adaptive filtering; multirate digital processing; and statistical signal classification. It also helps you overcome problems associated with multirate A/D and D/A converters.

Discriminant Analysis and Statistical Pattern Recognition

Discriminant Analysis and Statistical Pattern Recognition PDF Author: Geoffrey J. McLachlan
Publisher: John Wiley & Sons
ISBN: 0471725285
Category : Mathematics
Languages : en
Pages : 552

Get Book Here

Book Description
The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "For both applied and theoretical statisticians as well as investigators working in the many areas in which relevant use can be made of discriminant techniques, this monograph provides a modern, comprehensive, and systematic account of discriminant analysis, with the focus on the more recent advances in the field." –SciTech Book News ". . . a very useful source of information for any researcher working in discriminant analysis and pattern recognition." –Computational Statistics Discriminant Analysis and Statistical Pattern Recognition provides a systematic account of the subject. While the focus is on practical considerations, both theoretical and practical issues are explored. Among the advances covered are regularized discriminant analysis and bootstrap-based assessment of the performance of a sample-based discriminant rule, and extensions of discriminant analysis motivated by problems in statistical image analysis. The accompanying bibliography contains over 1,200 references.

Applied Regression Analysis for Business

Applied Regression Analysis for Business PDF Author: Jacek Welc
Publisher: Springer
ISBN: 3319711563
Category : Business & Economics
Languages : en
Pages : 294

Get Book Here

Book Description
This book offers hands-on statistical tools for business professionals by focusing on the practical application of a single-equation regression. The authors discuss commonly applied econometric procedures, which are useful in building regression models for economic forecasting and supporting business decisions. A significant part of the book is devoted to traps and pitfalls in implementing regression analysis in real-world scenarios. The book consists of nine chapters, the final two of which are fully devoted to case studies. Today's business environment is characterised by a huge amount of economic data. Making successful business decisions under such data-abundant conditions requires objective analytical tools, which can help to identify and quantify multiple relationships between dozens of economic variables. Single-equation regression analysis, which is discussed in this book, is one such tool. The book offers a valuable guide and is relevant in various areas of economic and business analysis, including marketing, financial and operational management.