Author: Humberto Ochoa-Dominguez
Publisher: CRC Press
ISBN: 1351396471
Category : Technology & Engineering
Languages : en
Pages : 408
Book Description
Many new DCT-like transforms have been proposed since the first edition of this book. For example, the integer DCT that yields integer transform coefficients, the directional DCT to take advantage of several directions of the image and the steerable DCT. The advent of higher dimensional frames such as UHDTV and 4K-TV demand for small and large transform blocks to encode small or large similar areas respectively in an efficient way. Therefore, a new updated book on DCT, adapted to the modern days, considering the new advances in this area and targeted for students, researchers and the industry is a necessity.
Discrete Cosine Transform, Second Edition
Author: Humberto Ochoa-Dominguez
Publisher: CRC Press
ISBN: 1351396471
Category : Technology & Engineering
Languages : en
Pages : 408
Book Description
Many new DCT-like transforms have been proposed since the first edition of this book. For example, the integer DCT that yields integer transform coefficients, the directional DCT to take advantage of several directions of the image and the steerable DCT. The advent of higher dimensional frames such as UHDTV and 4K-TV demand for small and large transform blocks to encode small or large similar areas respectively in an efficient way. Therefore, a new updated book on DCT, adapted to the modern days, considering the new advances in this area and targeted for students, researchers and the industry is a necessity.
Publisher: CRC Press
ISBN: 1351396471
Category : Technology & Engineering
Languages : en
Pages : 408
Book Description
Many new DCT-like transforms have been proposed since the first edition of this book. For example, the integer DCT that yields integer transform coefficients, the directional DCT to take advantage of several directions of the image and the steerable DCT. The advent of higher dimensional frames such as UHDTV and 4K-TV demand for small and large transform blocks to encode small or large similar areas respectively in an efficient way. Therefore, a new updated book on DCT, adapted to the modern days, considering the new advances in this area and targeted for students, researchers and the industry is a necessity.
Discrete Cosine Transform
Author: K. Ramamohan Rao
Publisher: Academic Press
ISBN: 0080925340
Category : Mathematics
Languages : en
Pages : 517
Book Description
This is the first comprehensive treatment of the theoretical aspects of the discrete cosine transform (DCT), which is being recommended by various standards organizations, such as the CCITT, ISO etc., as the primary compression tool in digital image coding. The main purpose of the book is to provide a complete source for the user of this signal processing tool, where both the basics and the applications are detailed. An extensive bibliography covers both the theory and applications of the DCT. The novice will find the book useful in its self-contained treatment of the theory of the DCT, the detailed description of various algorithms supported by computer programs and the range of possible applications, including codecs used for teleconferencing, videophone, progressive image transmission, and broadcast TV. The more advanced user will appreciate the extensive references. Tables describing ASIC VLSI chips for implementing DCT, and motion estimation and details on image compression boards are also provided.
Publisher: Academic Press
ISBN: 0080925340
Category : Mathematics
Languages : en
Pages : 517
Book Description
This is the first comprehensive treatment of the theoretical aspects of the discrete cosine transform (DCT), which is being recommended by various standards organizations, such as the CCITT, ISO etc., as the primary compression tool in digital image coding. The main purpose of the book is to provide a complete source for the user of this signal processing tool, where both the basics and the applications are detailed. An extensive bibliography covers both the theory and applications of the DCT. The novice will find the book useful in its self-contained treatment of the theory of the DCT, the detailed description of various algorithms supported by computer programs and the range of possible applications, including codecs used for teleconferencing, videophone, progressive image transmission, and broadcast TV. The more advanced user will appreciate the extensive references. Tables describing ASIC VLSI chips for implementing DCT, and motion estimation and details on image compression boards are also provided.
Discrete Cosine Transform
Author: Humberto Ochoa-Dominguez
Publisher: CRC Press
ISBN: 9781138304727
Category : Discrete cosine transforms
Languages : en
Pages : 358
Book Description
Revised edition of: Discrete cosine transform: algorithms, advntages, applications / K.R. Rao, P. Yip. 1990.
Publisher: CRC Press
ISBN: 9781138304727
Category : Discrete cosine transforms
Languages : en
Pages : 358
Book Description
Revised edition of: Discrete cosine transform: algorithms, advntages, applications / K.R. Rao, P. Yip. 1990.
Discrete Cosine and Sine Transforms
Author: Vladimir Britanak
Publisher: Elsevier
ISBN: 0080464645
Category : Mathematics
Languages : en
Pages : 364
Book Description
The Discrete Cosine Transform (DCT) is used in many applications by the scientific, engineering and research communities and in data compression in particular. Fast algorithms and applications of the DCT Type II (DCT-II) have become the heart of many established international image/video coding standards. Since then other forms of the DCT and Discrete Sine Transform (DST) have been investigated in detail. This new edition presents the complete set of DCT and DST discrete trigonometric transforms, including their definitions, general mathematical properties, and relations to the optimal Karhunen-Loéve transform (KLT), with the emphasis on fast algorithms (one-dimensional and two-dimensional) and integer approximations of DCTs and DSTs for their efficient implementations in the integer domain. DCTs and DSTs are real-valued transforms that map integer-valued signals to floating-point coefficients. To eliminate the floating-point operations, various methods of integer approximations have been proposed to construct and flexibly generate a family of integer DCT and DST transforms with arbitrary accuracy and performance. The integer DCTs/DSTs with low-cost and low-powered implementation can replace the corresponding real-valued transforms in wireless and satellite communication systems as well as portable computing applications. The book is essentially a detailed excursion on orthogonal/orthonormal DCT and DST matrices, their matrix factorizations and integer aproximations. It is hoped that the book will serve as a valuable reference for industry, academia and research institutes in developing integer DCTs and DSTs as well as an inspiration source for further advanced research. - Presentation of the complete set of DCTs and DSTs in context of entire class of discrete unitary sinusoidal transforms: the origin, definitions, general mathematical properties, mutual relationships and relations to the optimal Karhunen-Loéve transform (KLT) - Unified treatment with the fast implementations of DCTs and DSTs: the fast rotation-based algorithms derived in the form of recursive sparse matrix factorizations of a transform matrix including one- and two-dimensional cases - Detailed presentation of various methods and design approaches to integer approximation of DCTs and DSTs utilizing the basic concepts of linear algebra, matrix theory and matrix computations leading to their efficient multiplierless real-time implementations, or in general reversible integer-to-integer implementations - Comprehensive list of additional references reflecting recent/latest developments in the efficient implementations of DCTs and DSTs mainly one-, two-, three- and multi-dimensional fast DCT/DST algorithms including the recent active research topics for the time period from 1990 up to now
Publisher: Elsevier
ISBN: 0080464645
Category : Mathematics
Languages : en
Pages : 364
Book Description
The Discrete Cosine Transform (DCT) is used in many applications by the scientific, engineering and research communities and in data compression in particular. Fast algorithms and applications of the DCT Type II (DCT-II) have become the heart of many established international image/video coding standards. Since then other forms of the DCT and Discrete Sine Transform (DST) have been investigated in detail. This new edition presents the complete set of DCT and DST discrete trigonometric transforms, including their definitions, general mathematical properties, and relations to the optimal Karhunen-Loéve transform (KLT), with the emphasis on fast algorithms (one-dimensional and two-dimensional) and integer approximations of DCTs and DSTs for their efficient implementations in the integer domain. DCTs and DSTs are real-valued transforms that map integer-valued signals to floating-point coefficients. To eliminate the floating-point operations, various methods of integer approximations have been proposed to construct and flexibly generate a family of integer DCT and DST transforms with arbitrary accuracy and performance. The integer DCTs/DSTs with low-cost and low-powered implementation can replace the corresponding real-valued transforms in wireless and satellite communication systems as well as portable computing applications. The book is essentially a detailed excursion on orthogonal/orthonormal DCT and DST matrices, their matrix factorizations and integer aproximations. It is hoped that the book will serve as a valuable reference for industry, academia and research institutes in developing integer DCTs and DSTs as well as an inspiration source for further advanced research. - Presentation of the complete set of DCTs and DSTs in context of entire class of discrete unitary sinusoidal transforms: the origin, definitions, general mathematical properties, mutual relationships and relations to the optimal Karhunen-Loéve transform (KLT) - Unified treatment with the fast implementations of DCTs and DSTs: the fast rotation-based algorithms derived in the form of recursive sparse matrix factorizations of a transform matrix including one- and two-dimensional cases - Detailed presentation of various methods and design approaches to integer approximation of DCTs and DSTs utilizing the basic concepts of linear algebra, matrix theory and matrix computations leading to their efficient multiplierless real-time implementations, or in general reversible integer-to-integer implementations - Comprehensive list of additional references reflecting recent/latest developments in the efficient implementations of DCTs and DSTs mainly one-, two-, three- and multi-dimensional fast DCT/DST algorithms including the recent active research topics for the time period from 1990 up to now
Fourier Transforms in Radar and Signal Processing, Second Edition
Author: David Brandwood
Publisher: Artech House
ISBN: 1608071979
Category : Mathematics
Languages : en
Pages : 280
Book Description
Fourier transforms are used widely, and are of particular value in the analysis of single functions and combinations of functions found in radar and signal processing. Still, many problems that could have been tackled by using Fourier transforms may have gone unsolved because they require integration that is difficult and tedious. This newly revised and expanded edition of a classic Artech House book provides you with an up-to-date, coordinated system for performing Fourier transforms on a wide variety of functions. Along numerous updates throughout the book, the Second Edition includes a critical new chapter on periodic waveforms a topic not covered in any other book and detailed coverage of asymmetric triangular pulse. By building upon Woodward's well known "Rules and Pairs" method and related concepts and procedures, this book establishes a unified system that makes implicit the integration required for performing Fourier transforms on a wide variety of functions. It details how complex functions can be broken down to their constituent parts for analysis. You can now concentrate on functional relationships instead of getting bogged down in the details of integration. This approach to implementing Fourier transforms is illustrated with many specific examples from digital signal processing as well as radar and antenna operation. DVD-ROM Included! Contains MATLAB programs that implement many of the results presented in the book.
Publisher: Artech House
ISBN: 1608071979
Category : Mathematics
Languages : en
Pages : 280
Book Description
Fourier transforms are used widely, and are of particular value in the analysis of single functions and combinations of functions found in radar and signal processing. Still, many problems that could have been tackled by using Fourier transforms may have gone unsolved because they require integration that is difficult and tedious. This newly revised and expanded edition of a classic Artech House book provides you with an up-to-date, coordinated system for performing Fourier transforms on a wide variety of functions. Along numerous updates throughout the book, the Second Edition includes a critical new chapter on periodic waveforms a topic not covered in any other book and detailed coverage of asymmetric triangular pulse. By building upon Woodward's well known "Rules and Pairs" method and related concepts and procedures, this book establishes a unified system that makes implicit the integration required for performing Fourier transforms on a wide variety of functions. It details how complex functions can be broken down to their constituent parts for analysis. You can now concentrate on functional relationships instead of getting bogged down in the details of integration. This approach to implementing Fourier transforms is illustrated with many specific examples from digital signal processing as well as radar and antenna operation. DVD-ROM Included! Contains MATLAB programs that implement many of the results presented in the book.
Discrete Fourier Analysis and Wavelets
Author: S. Allen Broughton
Publisher: John Wiley & Sons
ISBN: 1119258243
Category : Mathematics
Languages : en
Pages : 582
Book Description
Delivers an appropriate mix of theory and applications to help readers understand the process and problems of image and signal analysis Maintaining a comprehensive and accessible treatment of the concepts, methods, and applications of signal and image data transformation, this Second Edition of Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing features updated and revised coverage throughout with an emphasis on key and recent developments in the field of signal and image processing. Topical coverage includes: vector spaces, signals, and images; the discrete Fourier transform; the discrete cosine transform; convolution and filtering; windowing and localization; spectrograms; frames; filter banks; lifting schemes; and wavelets. Discrete Fourier Analysis and Wavelets introduces a new chapter on frames—a new technology in which signals, images, and other data are redundantly measured. This redundancy allows for more sophisticated signal analysis. The new coverage also expands upon the discussion on spectrograms using a frames approach. In addition, the book includes a new chapter on lifting schemes for wavelets and provides a variation on the original low-pass/high-pass filter bank approach to the design and implementation of wavelets. These new chapters also include appropriate exercises and MATLAB® projects for further experimentation and practice. Features updated and revised content throughout, continues to emphasize discrete and digital methods, and utilizes MATLAB® to illustrate these concepts Contains two new chapters on frames and lifting schemes, which take into account crucial new advances in the field of signal and image processing Expands the discussion on spectrograms using a frames approach, which is an ideal method for reconstructing signals after information has been lost or corrupted (packet erasure) Maintains a comprehensive treatment of linear signal processing for audio and image signals with a well-balanced and accessible selection of topics that appeal to a diverse audience within mathematics and engineering Focuses on the underlying mathematics, especially the concepts of finite-dimensional vector spaces and matrix methods, and provides a rigorous model for signals and images based on vector spaces and linear algebra methods Supplemented with a companion website containing solution sets and software exploration support for MATLAB and SciPy (Scientific Python) Thoroughly class-tested over the past fifteen years, Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing is an appropriately self-contained book ideal for a one-semester course on the subject.
Publisher: John Wiley & Sons
ISBN: 1119258243
Category : Mathematics
Languages : en
Pages : 582
Book Description
Delivers an appropriate mix of theory and applications to help readers understand the process and problems of image and signal analysis Maintaining a comprehensive and accessible treatment of the concepts, methods, and applications of signal and image data transformation, this Second Edition of Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing features updated and revised coverage throughout with an emphasis on key and recent developments in the field of signal and image processing. Topical coverage includes: vector spaces, signals, and images; the discrete Fourier transform; the discrete cosine transform; convolution and filtering; windowing and localization; spectrograms; frames; filter banks; lifting schemes; and wavelets. Discrete Fourier Analysis and Wavelets introduces a new chapter on frames—a new technology in which signals, images, and other data are redundantly measured. This redundancy allows for more sophisticated signal analysis. The new coverage also expands upon the discussion on spectrograms using a frames approach. In addition, the book includes a new chapter on lifting schemes for wavelets and provides a variation on the original low-pass/high-pass filter bank approach to the design and implementation of wavelets. These new chapters also include appropriate exercises and MATLAB® projects for further experimentation and practice. Features updated and revised content throughout, continues to emphasize discrete and digital methods, and utilizes MATLAB® to illustrate these concepts Contains two new chapters on frames and lifting schemes, which take into account crucial new advances in the field of signal and image processing Expands the discussion on spectrograms using a frames approach, which is an ideal method for reconstructing signals after information has been lost or corrupted (packet erasure) Maintains a comprehensive treatment of linear signal processing for audio and image signals with a well-balanced and accessible selection of topics that appeal to a diverse audience within mathematics and engineering Focuses on the underlying mathematics, especially the concepts of finite-dimensional vector spaces and matrix methods, and provides a rigorous model for signals and images based on vector spaces and linear algebra methods Supplemented with a companion website containing solution sets and software exploration support for MATLAB and SciPy (Scientific Python) Thoroughly class-tested over the past fifteen years, Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing is an appropriately self-contained book ideal for a one-semester course on the subject.
Fast Fourier Transform and Convolution Algorithms
Author: H.J. Nussbaumer
Publisher: Springer Science & Business Media
ISBN: 3662005514
Category : Mathematics
Languages : en
Pages : 260
Book Description
This book presents in a unified way the various fast algorithms that are used for the implementation of digital filters and the evaluation of discrete Fourier transforms. The book consists of eight chapters. The first two chapters are devoted to background information and to introductory material on number theory and polynomial algebra. This section is limited to the basic concepts as they apply to other parts of the book. Thus, we have restricted our discussion of number theory to congruences, primitive roots, quadratic residues, and to the properties of Mersenne and Fermat numbers. The section on polynomial algebra deals primarily with the divisibility and congruence properties of polynomials and with algebraic computational complexity. The rest of the book is focused directly on fast digital filtering and discrete Fourier transform algorithms. We have attempted to present these techniques in a unified way by using polynomial algebra as extensively as possible. This objective has led us to reformulate many of the algorithms which are discussed in the book. It has been our experience that such a presentation serves to clarify the relationship between the algorithms and often provides clues to improved computation techniques. Chapter 3 reviews the fast digital filtering algorithms, with emphasis on algebraic methods and on the evaluation of one-dimensional circular convolutions. Chapters 4 and 5 present the fast Fourier transform and the Winograd Fourier transform algorithm.
Publisher: Springer Science & Business Media
ISBN: 3662005514
Category : Mathematics
Languages : en
Pages : 260
Book Description
This book presents in a unified way the various fast algorithms that are used for the implementation of digital filters and the evaluation of discrete Fourier transforms. The book consists of eight chapters. The first two chapters are devoted to background information and to introductory material on number theory and polynomial algebra. This section is limited to the basic concepts as they apply to other parts of the book. Thus, we have restricted our discussion of number theory to congruences, primitive roots, quadratic residues, and to the properties of Mersenne and Fermat numbers. The section on polynomial algebra deals primarily with the divisibility and congruence properties of polynomials and with algebraic computational complexity. The rest of the book is focused directly on fast digital filtering and discrete Fourier transform algorithms. We have attempted to present these techniques in a unified way by using polynomial algebra as extensively as possible. This objective has led us to reformulate many of the algorithms which are discussed in the book. It has been our experience that such a presentation serves to clarify the relationship between the algorithms and often provides clues to improved computation techniques. Chapter 3 reviews the fast digital filtering algorithms, with emphasis on algebraic methods and on the evaluation of one-dimensional circular convolutions. Chapters 4 and 5 present the fast Fourier transform and the Winograd Fourier transform algorithm.
Discrete-Time Signal Processing
Author: Alan V. Oppenheim
Publisher: Pearson Education India
ISBN: 9788131704929
Category : Discrete-time systems
Languages : en
Pages : 914
Book Description
Publisher: Pearson Education India
ISBN: 9788131704929
Category : Discrete-time systems
Languages : en
Pages : 914
Book Description
Fast Fourier Transforms
Author: James S. Walker
Publisher: CRC Press
ISBN: 1351448870
Category : Mathematics
Languages : en
Pages : 468
Book Description
This new edition of an indispensable text provides a clear treatment of Fourier Series, Fourier Transforms, and FFTs. The unique software, included with the book and newly updated for this edition, allows the reader to generate, firsthand, images of all aspects of Fourier analysis described in the text. Topics covered include :
Publisher: CRC Press
ISBN: 1351448870
Category : Mathematics
Languages : en
Pages : 468
Book Description
This new edition of an indispensable text provides a clear treatment of Fourier Series, Fourier Transforms, and FFTs. The unique software, included with the book and newly updated for this edition, allows the reader to generate, firsthand, images of all aspects of Fourier analysis described in the text. Topics covered include :
Signal Processing for Neuroscientists
Author: Wim van Drongelen
Publisher: Elsevier
ISBN: 008046775X
Category : Science
Languages : en
Pages : 319
Book Description
Signal Processing for Neuroscientists introduces analysis techniques primarily aimed at neuroscientists and biomedical engineering students with a reasonable but modest background in mathematics, physics, and computer programming. The focus of this text is on what can be considered the 'golden trio' in the signal processing field: averaging, Fourier analysis, and filtering. Techniques such as convolution, correlation, coherence, and wavelet analysis are considered in the context of time and frequency domain analysis. The whole spectrum of signal analysis is covered, ranging from data acquisition to data processing; and from the mathematical background of the analysis to the practical application of processing algorithms. Overall, the approach to the mathematics is informal with a focus on basic understanding of the methods and their interrelationships rather than detailed proofs or derivations. One of the principle goals is to provide the reader with the background required to understand the principles of commercially available analyses software, and to allow him/her to construct his/her own analysis tools in an environment such as MATLAB®. - Multiple color illustrations are integrated in the text - Includes an introduction to biomedical signals, noise characteristics, and recording techniques - Basics and background for more advanced topics can be found in extensive notes and appendices - A Companion Website hosts the MATLAB scripts and several data files: http://www.elsevierdirect.com/companion.jsp?ISBN=9780123708670
Publisher: Elsevier
ISBN: 008046775X
Category : Science
Languages : en
Pages : 319
Book Description
Signal Processing for Neuroscientists introduces analysis techniques primarily aimed at neuroscientists and biomedical engineering students with a reasonable but modest background in mathematics, physics, and computer programming. The focus of this text is on what can be considered the 'golden trio' in the signal processing field: averaging, Fourier analysis, and filtering. Techniques such as convolution, correlation, coherence, and wavelet analysis are considered in the context of time and frequency domain analysis. The whole spectrum of signal analysis is covered, ranging from data acquisition to data processing; and from the mathematical background of the analysis to the practical application of processing algorithms. Overall, the approach to the mathematics is informal with a focus on basic understanding of the methods and their interrelationships rather than detailed proofs or derivations. One of the principle goals is to provide the reader with the background required to understand the principles of commercially available analyses software, and to allow him/her to construct his/her own analysis tools in an environment such as MATLAB®. - Multiple color illustrations are integrated in the text - Includes an introduction to biomedical signals, noise characteristics, and recording techniques - Basics and background for more advanced topics can be found in extensive notes and appendices - A Companion Website hosts the MATLAB scripts and several data files: http://www.elsevierdirect.com/companion.jsp?ISBN=9780123708670