Author: Edward Aboufadel
Publisher: John Wiley & Sons
ISBN: 1118031156
Category : Mathematics
Languages : en
Pages : 142
Book Description
An accessible and practical introduction to wavelets With applications in image processing, audio restoration, seismology, and elsewhere, wavelets have been the subject of growing excitement and interest over the past several years. Unfortunately, most books on wavelets are accessible primarily to research mathematicians. Discovering Wavelets presents basic and advanced concepts of wavelets in a way that is accessible to anyone with only a fundamental knowledge of linear algebra. The basic concepts of wavelet theory are introduced in the context of an explanation of how the FBI uses wavelets to compress fingerprint images. Wavelet theory is further developed in the setting of function spaces. The book then moves on to present more advanced topics such as filters, multiresolution analysis, Daubechies' wavelets, and further applications. The book concludes with a series of projects and problems that introduce advanced topics and offer starting points for research. Sample projects that demonstrate real wavelet applications include image compression, a wavelet-based search engine, processing with Daubechies' wavelets, and more. Among the special features of Discovering Wavelets are: * Real-life, hands-on examples that involve actual wavelet applications * A companion Web site containing Pixel Images software and Maple files to be used with the projects in the book * Challenging problems that reinforce and expand on the ideas being developed * An appendix containing the linear algebra needed to understand wavelets as presented in the book
Discovering Wavelets
Author: Edward Aboufadel
Publisher: John Wiley & Sons
ISBN: 1118031156
Category : Mathematics
Languages : en
Pages : 142
Book Description
An accessible and practical introduction to wavelets With applications in image processing, audio restoration, seismology, and elsewhere, wavelets have been the subject of growing excitement and interest over the past several years. Unfortunately, most books on wavelets are accessible primarily to research mathematicians. Discovering Wavelets presents basic and advanced concepts of wavelets in a way that is accessible to anyone with only a fundamental knowledge of linear algebra. The basic concepts of wavelet theory are introduced in the context of an explanation of how the FBI uses wavelets to compress fingerprint images. Wavelet theory is further developed in the setting of function spaces. The book then moves on to present more advanced topics such as filters, multiresolution analysis, Daubechies' wavelets, and further applications. The book concludes with a series of projects and problems that introduce advanced topics and offer starting points for research. Sample projects that demonstrate real wavelet applications include image compression, a wavelet-based search engine, processing with Daubechies' wavelets, and more. Among the special features of Discovering Wavelets are: * Real-life, hands-on examples that involve actual wavelet applications * A companion Web site containing Pixel Images software and Maple files to be used with the projects in the book * Challenging problems that reinforce and expand on the ideas being developed * An appendix containing the linear algebra needed to understand wavelets as presented in the book
Publisher: John Wiley & Sons
ISBN: 1118031156
Category : Mathematics
Languages : en
Pages : 142
Book Description
An accessible and practical introduction to wavelets With applications in image processing, audio restoration, seismology, and elsewhere, wavelets have been the subject of growing excitement and interest over the past several years. Unfortunately, most books on wavelets are accessible primarily to research mathematicians. Discovering Wavelets presents basic and advanced concepts of wavelets in a way that is accessible to anyone with only a fundamental knowledge of linear algebra. The basic concepts of wavelet theory are introduced in the context of an explanation of how the FBI uses wavelets to compress fingerprint images. Wavelet theory is further developed in the setting of function spaces. The book then moves on to present more advanced topics such as filters, multiresolution analysis, Daubechies' wavelets, and further applications. The book concludes with a series of projects and problems that introduce advanced topics and offer starting points for research. Sample projects that demonstrate real wavelet applications include image compression, a wavelet-based search engine, processing with Daubechies' wavelets, and more. Among the special features of Discovering Wavelets are: * Real-life, hands-on examples that involve actual wavelet applications * A companion Web site containing Pixel Images software and Maple files to be used with the projects in the book * Challenging problems that reinforce and expand on the ideas being developed * An appendix containing the linear algebra needed to understand wavelets as presented in the book
Wavelets
Author: Amir-Homayoon Najmi
Publisher: JHU Press
ISBN: 1421405598
Category : Mathematics
Languages : en
Pages : 303
Book Description
Introduced nearly three decades ago as a variable resolution alternative to the Fourier transform, a wavelet is a short oscillatory waveform for analysis of transients. The discrete wavelet transform has remarkable multi-resolution and energy-compaction properties. Amir-Homayoon Najmi’s introduction to wavelet theory explains this mathematical concept clearly and succinctly. Wavelets are used in processing digital signals and imagery from myriad sources. They form the backbone of the JPEG2000 compression standard, and the Federal Bureau of Investigation uses biorthogonal wavelets to compress and store its vast database of fingerprints. Najmi provides the mathematics that demonstrate how wavelets work, describes how to construct them, and discusses their importance as a tool to investigate and process signals and imagery. He reviews key concepts such as frames, localizing transforms, orthogonal and biorthogonal bases, and multi-resolution. His examples include the Haar, the Shannon, and the Daubechies families of orthogonal and biorthogonal wavelets. Our capacity and need for collecting and transmitting digital data is increasing at an astonishing rate. So too is the importance of wavelets to anyone working with and analyzing digital data. Najmi’s primer will be an indispensable resource for those in computer science, the physical sciences, applied mathematics, and engineering who wish to obtain an in-depth understanding and working knowledge of this fascinating and evolving field.
Publisher: JHU Press
ISBN: 1421405598
Category : Mathematics
Languages : en
Pages : 303
Book Description
Introduced nearly three decades ago as a variable resolution alternative to the Fourier transform, a wavelet is a short oscillatory waveform for analysis of transients. The discrete wavelet transform has remarkable multi-resolution and energy-compaction properties. Amir-Homayoon Najmi’s introduction to wavelet theory explains this mathematical concept clearly and succinctly. Wavelets are used in processing digital signals and imagery from myriad sources. They form the backbone of the JPEG2000 compression standard, and the Federal Bureau of Investigation uses biorthogonal wavelets to compress and store its vast database of fingerprints. Najmi provides the mathematics that demonstrate how wavelets work, describes how to construct them, and discusses their importance as a tool to investigate and process signals and imagery. He reviews key concepts such as frames, localizing transforms, orthogonal and biorthogonal bases, and multi-resolution. His examples include the Haar, the Shannon, and the Daubechies families of orthogonal and biorthogonal wavelets. Our capacity and need for collecting and transmitting digital data is increasing at an astonishing rate. So too is the importance of wavelets to anyone working with and analyzing digital data. Najmi’s primer will be an indispensable resource for those in computer science, the physical sciences, applied mathematics, and engineering who wish to obtain an in-depth understanding and working knowledge of this fascinating and evolving field.
Framelets and Wavelets
Author: Bin Han
Publisher: Springer
ISBN: 3319685309
Category : Mathematics
Languages : en
Pages : 750
Book Description
Marking a distinct departure from the perspectives of frame theory and discrete transforms, this book provides a comprehensive mathematical and algorithmic introduction to wavelet theory. As such, it can be used as either a textbook or reference guide. As a textbook for graduate mathematics students and beginning researchers, it offers detailed information on the basic theory of framelets and wavelets, complemented by self-contained elementary proofs, illustrative examples/figures, and supplementary exercises. Further, as an advanced reference guide for experienced researchers and practitioners in mathematics, physics, and engineering, the book addresses in detail a wide range of basic and advanced topics (such as multiwavelets/multiframelets in Sobolev spaces and directional framelets) in wavelet theory, together with systematic mathematical analysis, concrete algorithms, and recent developments in and applications of framelets and wavelets. Lastly, the book can also be used to teach on or study selected special topics in approximation theory, Fourier analysis, applied harmonic analysis, functional analysis, and wavelet-based signal/image processing.
Publisher: Springer
ISBN: 3319685309
Category : Mathematics
Languages : en
Pages : 750
Book Description
Marking a distinct departure from the perspectives of frame theory and discrete transforms, this book provides a comprehensive mathematical and algorithmic introduction to wavelet theory. As such, it can be used as either a textbook or reference guide. As a textbook for graduate mathematics students and beginning researchers, it offers detailed information on the basic theory of framelets and wavelets, complemented by self-contained elementary proofs, illustrative examples/figures, and supplementary exercises. Further, as an advanced reference guide for experienced researchers and practitioners in mathematics, physics, and engineering, the book addresses in detail a wide range of basic and advanced topics (such as multiwavelets/multiframelets in Sobolev spaces and directional framelets) in wavelet theory, together with systematic mathematical analysis, concrete algorithms, and recent developments in and applications of framelets and wavelets. Lastly, the book can also be used to teach on or study selected special topics in approximation theory, Fourier analysis, applied harmonic analysis, functional analysis, and wavelet-based signal/image processing.
Computational Signal Processing with Wavelets
Author: Anthony Teolis
Publisher: Birkhäuser
ISBN: 331965747X
Category : Mathematics
Languages : en
Pages : 345
Book Description
This unique resource examines the conceptual, computational, and practical aspects of applied signal processing using wavelets. With this book, readers will understand and be able to use the power and utility of new wavelet methods in science and engineering problems and analysis. The text is written in a clear, accessible style avoiding unnecessary abstractions and details. From a computational perspective, wavelet signal processing algorithms are presented and applied to signal compression, noise suppression, and signal identification. Numerical illustrations of these computational techniques are further provided with interactive software (MATLAB code) that is available on the World Wide Web. Topics and Features Continuous wavelet and Gabor transforms Frame-based theory of discretization and reconstruction of analog signals is developed New and efficient "overcomplete" wavelet transform is introduced and applied Numerical illustrations with an object-oriented computational perspective using the Wavelet Signal Processing Workstation (MATLAB code) available This book is an excellent resource for information and computational tools needed to use wavelets in many types of signal processing problems. Graduates, professionals, and practitioners in engineering, computer science, geophysics, and applied mathematics will benefit from using the book and software tools. The present, softcover reprint is designed to make this classic textbook available to a wider audience. A self-contained text that is theoretically rigorous while maintaining contact with interesting applications. A particularly noteworthy topic...is a class of ‘overcomplete wavelets’. These functions are not orthonormal and they lead to many useful results. —Journal of Mathematical Psychology
Publisher: Birkhäuser
ISBN: 331965747X
Category : Mathematics
Languages : en
Pages : 345
Book Description
This unique resource examines the conceptual, computational, and practical aspects of applied signal processing using wavelets. With this book, readers will understand and be able to use the power and utility of new wavelet methods in science and engineering problems and analysis. The text is written in a clear, accessible style avoiding unnecessary abstractions and details. From a computational perspective, wavelet signal processing algorithms are presented and applied to signal compression, noise suppression, and signal identification. Numerical illustrations of these computational techniques are further provided with interactive software (MATLAB code) that is available on the World Wide Web. Topics and Features Continuous wavelet and Gabor transforms Frame-based theory of discretization and reconstruction of analog signals is developed New and efficient "overcomplete" wavelet transform is introduced and applied Numerical illustrations with an object-oriented computational perspective using the Wavelet Signal Processing Workstation (MATLAB code) available This book is an excellent resource for information and computational tools needed to use wavelets in many types of signal processing problems. Graduates, professionals, and practitioners in engineering, computer science, geophysics, and applied mathematics will benefit from using the book and software tools. The present, softcover reprint is designed to make this classic textbook available to a wider audience. A self-contained text that is theoretically rigorous while maintaining contact with interesting applications. A particularly noteworthy topic...is a class of ‘overcomplete wavelets’. These functions are not orthonormal and they lead to many useful results. —Journal of Mathematical Psychology
An Introduction to Wavelets and Other Filtering Methods in Finance and Economics
Author: Ramazan Gençay
Publisher: Elsevier
ISBN: 0080509223
Category : Business & Economics
Languages : en
Pages : 383
Book Description
An Introduction to Wavelets and Other Filtering Methods in Finance and Economics presents a unified view of filtering techniques with a special focus on wavelet analysis in finance and economics. It emphasizes the methods and explanations of the theory that underlies them. It also concentrates on exactly what wavelet analysis (and filtering methods in general) can reveal about a time series. It offers testing issues which can be performed with wavelets in conjunction with the multi-resolution analysis. The descriptive focus of the book avoids proofs and provides easy access to a wide spectrum of parametric and nonparametric filtering methods. Examples and empirical applications will show readers the capabilities, advantages, and disadvantages of each method. - The first book to present a unified view of filtering techniques - Concentrates on exactly what wavelets analysis and filtering methods in general can reveal about a time series - Provides easy access to a wide spectrum of parametric and non-parametric filtering methods
Publisher: Elsevier
ISBN: 0080509223
Category : Business & Economics
Languages : en
Pages : 383
Book Description
An Introduction to Wavelets and Other Filtering Methods in Finance and Economics presents a unified view of filtering techniques with a special focus on wavelet analysis in finance and economics. It emphasizes the methods and explanations of the theory that underlies them. It also concentrates on exactly what wavelet analysis (and filtering methods in general) can reveal about a time series. It offers testing issues which can be performed with wavelets in conjunction with the multi-resolution analysis. The descriptive focus of the book avoids proofs and provides easy access to a wide spectrum of parametric and nonparametric filtering methods. Examples and empirical applications will show readers the capabilities, advantages, and disadvantages of each method. - The first book to present a unified view of filtering techniques - Concentrates on exactly what wavelets analysis and filtering methods in general can reveal about a time series - Provides easy access to a wide spectrum of parametric and non-parametric filtering methods
A Friendly Guide to Wavelets
Author: Gerald Kaiser
Publisher: Springer Science & Business Media
ISBN: 0817681116
Category : Mathematics
Languages : en
Pages : 318
Book Description
This volume is designed as a textbook for an introductory course on wavelet analysis and time-frequency analysis aimed at graduate students or advanced undergraduates in science and engineering. It can also be used as a self-study or reference book by practicing researchers in signal analysis and related areas. Since the expected audience is not presumed to have a high level of mathematical background, much of the needed analytical machinery is developed from the beginning. The only prerequisites for the first eight chapters are matrix theory, Fourier series, and Fourier integral transforms. Each of these chapters ends with a set of straightforward exercises designed to drive home the concepts just covered, and the many graphics should further facilitate absorption.
Publisher: Springer Science & Business Media
ISBN: 0817681116
Category : Mathematics
Languages : en
Pages : 318
Book Description
This volume is designed as a textbook for an introductory course on wavelet analysis and time-frequency analysis aimed at graduate students or advanced undergraduates in science and engineering. It can also be used as a self-study or reference book by practicing researchers in signal analysis and related areas. Since the expected audience is not presumed to have a high level of mathematical background, much of the needed analytical machinery is developed from the beginning. The only prerequisites for the first eight chapters are matrix theory, Fourier series, and Fourier integral transforms. Each of these chapters ends with a set of straightforward exercises designed to drive home the concepts just covered, and the many graphics should further facilitate absorption.
Wavelets
Author: Robert X Gao
Publisher: Springer Science & Business Media
ISBN: 1441915451
Category : Technology & Engineering
Languages : en
Pages : 232
Book Description
Wavelets: Theory and Applications for Manufacturing presents a systematic description of the fundamentals of wavelet transform and its applications. Given the widespread utilization of rotating machines in modern manufacturing and the increasing need for condition-based, as opposed to fix-interval, intelligent maintenance to minimize machine down time and ensure reliable production, it is of critical importance to advance the science base of signal processing in manufacturing. This volume also deals with condition monitoring and health diagnosis of rotating machine components and systems, such as bearings, spindles, and gearboxes, while also: -Providing a comprehensive survey on wavelets specifically related to problems encountered in manufacturing -Discussing the integration of wavelet transforms with other soft computing techniques such as fuzzy logic, for machine defect and severity classification -Showing how to custom design wavelets for improved performance in signal analysis Focusing on wavelet transform as a tool specifically applied and designed for applications in manufacturing, Wavelets: Theory and Applications for Manufacturing presents material appropriate for both academic researchers and practicing engineers working in the field of manufacturing.
Publisher: Springer Science & Business Media
ISBN: 1441915451
Category : Technology & Engineering
Languages : en
Pages : 232
Book Description
Wavelets: Theory and Applications for Manufacturing presents a systematic description of the fundamentals of wavelet transform and its applications. Given the widespread utilization of rotating machines in modern manufacturing and the increasing need for condition-based, as opposed to fix-interval, intelligent maintenance to minimize machine down time and ensure reliable production, it is of critical importance to advance the science base of signal processing in manufacturing. This volume also deals with condition monitoring and health diagnosis of rotating machine components and systems, such as bearings, spindles, and gearboxes, while also: -Providing a comprehensive survey on wavelets specifically related to problems encountered in manufacturing -Discussing the integration of wavelet transforms with other soft computing techniques such as fuzzy logic, for machine defect and severity classification -Showing how to custom design wavelets for improved performance in signal analysis Focusing on wavelet transform as a tool specifically applied and designed for applications in manufacturing, Wavelets: Theory and Applications for Manufacturing presents material appropriate for both academic researchers and practicing engineers working in the field of manufacturing.
Wavelets, Approximation, and Statistical Applications
Author: Wolfgang Härdle
Publisher: Springer Science & Business Media
ISBN: 1461222222
Category : Mathematics
Languages : en
Pages : 276
Book Description
The mathematical theory of ondelettes (wavelets) was developed by Yves Meyer and many collaborators about 10 years ago. It was designed for ap proximation of possibly irregular functions and surfaces and was successfully applied in data compression, turbulence analysis, image and signal process ing. Five years ago wavelet theory progressively appeared to be a power ful framework for nonparametric statistical problems. Efficient computa tional implementations are beginning to surface in this second lustrum of the nineties. This book brings together these three main streams of wavelet theory. It presents the theory, discusses approximations and gives a variety of statistical applications. It is the aim of this text to introduce the novice in this field into the various aspects of wavelets. Wavelets require a highly interactive computing interface. We present therefore all applications with software code from an interactive statistical computing environment. Readers interested in theory and construction of wavelets will find here in a condensed form results that are somewhat scattered around in the research literature. A practioner will be able to use wavelets via the available software code. We hope therefore to address both theory and practice with this book and thus help to construct bridges between the different groups of scientists. This te. xt grew out of a French-German cooperation (Seminaire Paris Berlin, Seminar Berlin-Paris). This seminar brings together theoretical and applied statisticians from Berlin and Paris. This work originates in the first of these seminars organized in Garchy, Burgundy in 1994.
Publisher: Springer Science & Business Media
ISBN: 1461222222
Category : Mathematics
Languages : en
Pages : 276
Book Description
The mathematical theory of ondelettes (wavelets) was developed by Yves Meyer and many collaborators about 10 years ago. It was designed for ap proximation of possibly irregular functions and surfaces and was successfully applied in data compression, turbulence analysis, image and signal process ing. Five years ago wavelet theory progressively appeared to be a power ful framework for nonparametric statistical problems. Efficient computa tional implementations are beginning to surface in this second lustrum of the nineties. This book brings together these three main streams of wavelet theory. It presents the theory, discusses approximations and gives a variety of statistical applications. It is the aim of this text to introduce the novice in this field into the various aspects of wavelets. Wavelets require a highly interactive computing interface. We present therefore all applications with software code from an interactive statistical computing environment. Readers interested in theory and construction of wavelets will find here in a condensed form results that are somewhat scattered around in the research literature. A practioner will be able to use wavelets via the available software code. We hope therefore to address both theory and practice with this book and thus help to construct bridges between the different groups of scientists. This te. xt grew out of a French-German cooperation (Seminaire Paris Berlin, Seminar Berlin-Paris). This seminar brings together theoretical and applied statisticians from Berlin and Paris. This work originates in the first of these seminars organized in Garchy, Burgundy in 1994.
Essential Wavelets for Statistical Applications and Data Analysis
Author: Todd Ogden
Publisher: Springer Science & Business Media
ISBN: 1461207096
Category : Technology & Engineering
Languages : en
Pages : 218
Book Description
I once heard the book by Meyer (1993) described as a "vulgarization" of wavelets. While this is true in one sense of the word, that of making a sub ject popular (Meyer's book is one of the early works written with the non specialist in mind), the implication seems to be that such an attempt some how cheapens or coarsens the subject. I have to disagree that popularity goes hand-in-hand with debasement. is certainly a beautiful theory underlying wavelet analysis, there is While there plenty of beauty left over for the applications of wavelet methods. This book is also written for the non-specialist, and therefore its main thrust is toward wavelet applications. Enough theory is given to help the reader gain a basic understanding of how wavelets work in practice, but much of the theory can be presented using only a basic level of mathematics. Only one theorem is for mally stated in this book, with only one proof. And these are only included to introduce some key concepts in a natural way.
Publisher: Springer Science & Business Media
ISBN: 1461207096
Category : Technology & Engineering
Languages : en
Pages : 218
Book Description
I once heard the book by Meyer (1993) described as a "vulgarization" of wavelets. While this is true in one sense of the word, that of making a sub ject popular (Meyer's book is one of the early works written with the non specialist in mind), the implication seems to be that such an attempt some how cheapens or coarsens the subject. I have to disagree that popularity goes hand-in-hand with debasement. is certainly a beautiful theory underlying wavelet analysis, there is While there plenty of beauty left over for the applications of wavelet methods. This book is also written for the non-specialist, and therefore its main thrust is toward wavelet applications. Enough theory is given to help the reader gain a basic understanding of how wavelets work in practice, but much of the theory can be presented using only a basic level of mathematics. Only one theorem is for mally stated in this book, with only one proof. And these are only included to introduce some key concepts in a natural way.
Introduction to Wavelets and Wavelet Transforms
Author: C. S. Burrus
Publisher: Pearson
ISBN:
Category : Mathematics
Languages : en
Pages : 294
Book Description
Advanced undergraduate and beginning graduate students, faculty, researchers and practitioners in signal processing, telecommunications, and computer science, and applied mathematics. It assumes a background of Fourier series and transforms and of linear algebra and matrix methods. This primer presents a well balanced blend of the mathematical theory underlying wavelet techniques and a discussion that gives insight into why wavelets are successful in signal analysis, compression, dection, numerical analysis, and a wide variety of other theoretical and practical applications. It fills a gap in the existing wavelet literature with its unified view of expansions of signals into bases and frames, as well as the use of filter banks as descriptions and algorithms.
Publisher: Pearson
ISBN:
Category : Mathematics
Languages : en
Pages : 294
Book Description
Advanced undergraduate and beginning graduate students, faculty, researchers and practitioners in signal processing, telecommunications, and computer science, and applied mathematics. It assumes a background of Fourier series and transforms and of linear algebra and matrix methods. This primer presents a well balanced blend of the mathematical theory underlying wavelet techniques and a discussion that gives insight into why wavelets are successful in signal analysis, compression, dection, numerical analysis, and a wide variety of other theoretical and practical applications. It fills a gap in the existing wavelet literature with its unified view of expansions of signals into bases and frames, as well as the use of filter banks as descriptions and algorithms.