Author: Mark McKibben
Publisher: CRC Press
ISBN: 1420092073
Category : Mathematics
Languages : en
Pages : 458
Book Description
Discovering Evolution Equations with Applications: Volume 1-Deterministic Equations provides an engaging, accessible account of core theoretical results of evolution equations in a way that gradually builds intuition and culminates in exploring active research. It gives nonspecialists, even those with minimal prior exposure to analysis, the foundation to understand what evolution equations are and how to work with them in various areas of practice. After presenting the essentials of analysis, the book discusses homogenous finite-dimensional ordinary differential equations. Subsequent chapters then focus on linear homogenous abstract, nonhomogenous linear, semi-linear, functional, Sobolev-type, neutral, delay, and nonlinear evolution equations. The final two chapters explore research topics, including nonlocal evolution equations. For each class of equations, the author develops a core of theoretical results concerning the existence and uniqueness of solutions under various growth and compactness assumptions, continuous dependence upon initial data and parameters, convergence results regarding the initial data, and elementary stability results. By taking an applications-oriented approach, this self-contained, conversational-style book motivates readers to fully grasp the mathematical details of studying evolution equations. It prepares newcomers to successfully navigate further research in the field.
Discovering Evolution Equations with Applications
Author: Mark McKibben
Publisher: CRC Press
ISBN: 1420092073
Category : Mathematics
Languages : en
Pages : 458
Book Description
Discovering Evolution Equations with Applications: Volume 1-Deterministic Equations provides an engaging, accessible account of core theoretical results of evolution equations in a way that gradually builds intuition and culminates in exploring active research. It gives nonspecialists, even those with minimal prior exposure to analysis, the foundation to understand what evolution equations are and how to work with them in various areas of practice. After presenting the essentials of analysis, the book discusses homogenous finite-dimensional ordinary differential equations. Subsequent chapters then focus on linear homogenous abstract, nonhomogenous linear, semi-linear, functional, Sobolev-type, neutral, delay, and nonlinear evolution equations. The final two chapters explore research topics, including nonlocal evolution equations. For each class of equations, the author develops a core of theoretical results concerning the existence and uniqueness of solutions under various growth and compactness assumptions, continuous dependence upon initial data and parameters, convergence results regarding the initial data, and elementary stability results. By taking an applications-oriented approach, this self-contained, conversational-style book motivates readers to fully grasp the mathematical details of studying evolution equations. It prepares newcomers to successfully navigate further research in the field.
Publisher: CRC Press
ISBN: 1420092073
Category : Mathematics
Languages : en
Pages : 458
Book Description
Discovering Evolution Equations with Applications: Volume 1-Deterministic Equations provides an engaging, accessible account of core theoretical results of evolution equations in a way that gradually builds intuition and culminates in exploring active research. It gives nonspecialists, even those with minimal prior exposure to analysis, the foundation to understand what evolution equations are and how to work with them in various areas of practice. After presenting the essentials of analysis, the book discusses homogenous finite-dimensional ordinary differential equations. Subsequent chapters then focus on linear homogenous abstract, nonhomogenous linear, semi-linear, functional, Sobolev-type, neutral, delay, and nonlinear evolution equations. The final two chapters explore research topics, including nonlocal evolution equations. For each class of equations, the author develops a core of theoretical results concerning the existence and uniqueness of solutions under various growth and compactness assumptions, continuous dependence upon initial data and parameters, convergence results regarding the initial data, and elementary stability results. By taking an applications-oriented approach, this self-contained, conversational-style book motivates readers to fully grasp the mathematical details of studying evolution equations. It prepares newcomers to successfully navigate further research in the field.
Evolutionary Dynamics
Author: Martin A. Nowak
Publisher: Harvard University Press
ISBN: 0674417755
Category : Science
Languages : en
Pages : 390
Book Description
At a time of unprecedented expansion in the life sciences, evolution is the one theory that transcends all of biology. Any observation of a living system must ultimately be interpreted in the context of its evolution. Evolutionary change is the consequence of mutation and natural selection, which are two concepts that can be described by mathematical equations. Evolutionary Dynamics is concerned with these equations of life. In this book, Martin A. Nowak draws on the languages of biology and mathematics to outline the mathematical principles according to which life evolves. His work introduces readers to the powerful yet simple laws that govern the evolution of living systems, no matter how complicated they might seem. Evolution has become a mathematical theory, Nowak suggests, and any idea of an evolutionary process or mechanism should be studied in the context of the mathematical equations of evolutionary dynamics. His book presents a range of analytical tools that can be used to this end: fitness landscapes, mutation matrices, genomic sequence space, random drift, quasispecies, replicators, the Prisoner’s Dilemma, games in finite and infinite populations, evolutionary graph theory, games on grids, evolutionary kaleidoscopes, fractals, and spatial chaos. Nowak then shows how evolutionary dynamics applies to critical real-world problems, including the progression of viral diseases such as AIDS, the virulence of infectious agents, the unpredictable mutations that lead to cancer, the evolution of altruism, and even the evolution of human language. His book makes a clear and compelling case for understanding every living system—and everything that arises as a consequence of living systems—in terms of evolutionary dynamics.
Publisher: Harvard University Press
ISBN: 0674417755
Category : Science
Languages : en
Pages : 390
Book Description
At a time of unprecedented expansion in the life sciences, evolution is the one theory that transcends all of biology. Any observation of a living system must ultimately be interpreted in the context of its evolution. Evolutionary change is the consequence of mutation and natural selection, which are two concepts that can be described by mathematical equations. Evolutionary Dynamics is concerned with these equations of life. In this book, Martin A. Nowak draws on the languages of biology and mathematics to outline the mathematical principles according to which life evolves. His work introduces readers to the powerful yet simple laws that govern the evolution of living systems, no matter how complicated they might seem. Evolution has become a mathematical theory, Nowak suggests, and any idea of an evolutionary process or mechanism should be studied in the context of the mathematical equations of evolutionary dynamics. His book presents a range of analytical tools that can be used to this end: fitness landscapes, mutation matrices, genomic sequence space, random drift, quasispecies, replicators, the Prisoner’s Dilemma, games in finite and infinite populations, evolutionary graph theory, games on grids, evolutionary kaleidoscopes, fractals, and spatial chaos. Nowak then shows how evolutionary dynamics applies to critical real-world problems, including the progression of viral diseases such as AIDS, the virulence of infectious agents, the unpredictable mutations that lead to cancer, the evolution of altruism, and even the evolution of human language. His book makes a clear and compelling case for understanding every living system—and everything that arises as a consequence of living systems—in terms of evolutionary dynamics.
Dynamical Systems and Evolution Equations
Author: John A. Walker
Publisher: Springer Science & Business Media
ISBN: 1468410369
Category : Computers
Languages : en
Pages : 244
Book Description
This book grew out of a nine-month course first given during 1976-77 in the Division of Engineering Mechanics, University of Texas (Austin), and repeated during 1977-78 in the Department of Engineering Sciences and Applied Mathematics, Northwestern University. Most of the students were in their second year of graduate study, and all were familiar with Fourier series, Lebesgue integration, Hilbert space, and ordinary differential equa tions in finite-dimensional space. This book is primarily an exposition of certain methods of topological dynamics that have been found to be very useful in the analysis of physical systems but appear to be well known only to specialists. The purpose of the book is twofold: to present the material in such a way that the applications-oriented reader will be encouraged to apply these methods in the study of those physical systems of personal interest, and to make the coverage sufficient to render the current research literature intelligible, preparing the more mathematically inclined reader for research in this particular area of applied mathematics. We present only that portion of the theory which seems most useful in applications to physical systems. Adopting the view that the world is deterministic, we consider our basic problem to be predicting the future for a given physical system. This prediction is to be based on a known equation of evolution, describing the forward-time behavior of the system, but it is to be made without explicitly solving the equation.
Publisher: Springer Science & Business Media
ISBN: 1468410369
Category : Computers
Languages : en
Pages : 244
Book Description
This book grew out of a nine-month course first given during 1976-77 in the Division of Engineering Mechanics, University of Texas (Austin), and repeated during 1977-78 in the Department of Engineering Sciences and Applied Mathematics, Northwestern University. Most of the students were in their second year of graduate study, and all were familiar with Fourier series, Lebesgue integration, Hilbert space, and ordinary differential equa tions in finite-dimensional space. This book is primarily an exposition of certain methods of topological dynamics that have been found to be very useful in the analysis of physical systems but appear to be well known only to specialists. The purpose of the book is twofold: to present the material in such a way that the applications-oriented reader will be encouraged to apply these methods in the study of those physical systems of personal interest, and to make the coverage sufficient to render the current research literature intelligible, preparing the more mathematically inclined reader for research in this particular area of applied mathematics. We present only that portion of the theory which seems most useful in applications to physical systems. Adopting the view that the world is deterministic, we consider our basic problem to be predicting the future for a given physical system. This prediction is to be based on a known equation of evolution, describing the forward-time behavior of the system, but it is to be made without explicitly solving the equation.
Yosida Approximations of Stochastic Differential Equations in Infinite Dimensions and Applications
Author: T. E. Govindan
Publisher: Springer
ISBN: 3319456849
Category : Mathematics
Languages : en
Pages : 421
Book Description
This research monograph brings together, for the first time, the varied literature on Yosida approximations of stochastic differential equations (SDEs) in infinite dimensions and their applications into a single cohesive work. The author provides a clear and systematic introduction to the Yosida approximation method and justifies its power by presenting its applications in some practical topics such as stochastic stability and stochastic optimal control. The theory assimilated spans more than 35 years of mathematics, but is developed slowly and methodically in digestible pieces. The book begins with a motivational chapter that introduces the reader to several different models that play recurring roles throughout the book as the theory is unfolded, and invites readers from different disciplines to see immediately that the effort required to work through the theory that follows is worthwhile. From there, the author presents the necessary prerequisite material, and then launches the reader into the main discussion of the monograph, namely, Yosida approximations of SDEs, Yosida approximations of SDEs with Poisson jumps, and their applications. Most of the results considered in the main chapters appear for the first time in a book form, and contain illustrative examples on stochastic partial differential equations. The key steps are included in all proofs, especially the various estimates, which help the reader to get a true feel for the theory of Yosida approximations and their use. This work is intended for researchers and graduate students in mathematics specializing in probability theory and will appeal to numerical analysts, engineers, physicists and practitioners in finance who want to apply the theory of stochastic evolution equations. Since the approach is based mainly in semigroup theory, it is amenable to a wide audience including non-specialists in stochastic processes.
Publisher: Springer
ISBN: 3319456849
Category : Mathematics
Languages : en
Pages : 421
Book Description
This research monograph brings together, for the first time, the varied literature on Yosida approximations of stochastic differential equations (SDEs) in infinite dimensions and their applications into a single cohesive work. The author provides a clear and systematic introduction to the Yosida approximation method and justifies its power by presenting its applications in some practical topics such as stochastic stability and stochastic optimal control. The theory assimilated spans more than 35 years of mathematics, but is developed slowly and methodically in digestible pieces. The book begins with a motivational chapter that introduces the reader to several different models that play recurring roles throughout the book as the theory is unfolded, and invites readers from different disciplines to see immediately that the effort required to work through the theory that follows is worthwhile. From there, the author presents the necessary prerequisite material, and then launches the reader into the main discussion of the monograph, namely, Yosida approximations of SDEs, Yosida approximations of SDEs with Poisson jumps, and their applications. Most of the results considered in the main chapters appear for the first time in a book form, and contain illustrative examples on stochastic partial differential equations. The key steps are included in all proofs, especially the various estimates, which help the reader to get a true feel for the theory of Yosida approximations and their use. This work is intended for researchers and graduate students in mathematics specializing in probability theory and will appeal to numerical analysts, engineers, physicists and practitioners in finance who want to apply the theory of stochastic evolution equations. Since the approach is based mainly in semigroup theory, it is amenable to a wide audience including non-specialists in stochastic processes.
Trotter-Kato Approximations of Stochastic Differential Equations in Infinite Dimensions and Applications
Author: T. E. Govindan
Publisher: Springer Nature
ISBN: 3031427912
Category :
Languages : en
Pages : 321
Book Description
Publisher: Springer Nature
ISBN: 3031427912
Category :
Languages : en
Pages : 321
Book Description
New Prospects in Direct, Inverse and Control Problems for Evolution Equations
Author: Angelo Favini
Publisher: Springer
ISBN: 3319114069
Category : Mathematics
Languages : en
Pages : 472
Book Description
This book, based on a selection of talks given at a dedicated meeting in Cortona, Italy, in June 2013, shows the high degree of interaction between a number of fields related to applied sciences. Applied sciences consider situations in which the evolution of a given system over time is observed, and the related models can be formulated in terms of evolution equations (EEs). These equations have been studied intensively in theoretical research and are the source of an enormous number of applications. In this volume, particular attention is given to direct, inverse and control problems for EEs. The book provides an updated overview of the field, revealing its richness and vitality.
Publisher: Springer
ISBN: 3319114069
Category : Mathematics
Languages : en
Pages : 472
Book Description
This book, based on a selection of talks given at a dedicated meeting in Cortona, Italy, in June 2013, shows the high degree of interaction between a number of fields related to applied sciences. Applied sciences consider situations in which the evolution of a given system over time is observed, and the related models can be formulated in terms of evolution equations (EEs). These equations have been studied intensively in theoretical research and are the source of an enormous number of applications. In this volume, particular attention is given to direct, inverse and control problems for EEs. The book provides an updated overview of the field, revealing its richness and vitality.
Discovering Evolution Equations with Applications
Author: Mark McKibben
Publisher: CRC Press
ISBN: 9781138113589
Category :
Languages : en
Pages : 463
Book Description
Most existing books on evolution equations tend either to cover a particular class of equations in too much depth for beginners or focus on a very specific research direction. Thus, the field can be daunting for newcomers to the field who need access to preliminary material and behind-the-scenes detail. Taking an applications-oriented, conversational approach, Discovering Evolution Equations with Applications: Volume 2-Stochastic Equations provides an introductory understanding of stochastic evolution equations. The text begins with hands-on introductions to the essentials of real and stochastic analysis. It then develops the theory for homogenous one-dimensional stochastic ordinary differential equations (ODEs) and extends the theory to systems of homogenous linear stochastic ODEs. The next several chapters focus on abstract homogenous linear, nonhomogenous linear, and semi-linear stochastic evolution equations. The author also addresses the case in which the forcing term is a functional before explaining Sobolev-type stochastic evolution equations. The last chapter discusses several topics of active research. Each chapter starts with examples of various models. The author points out the similarities of the models, develops the theory involved, and then revisits the examples to reinforce the theoretical ideas in a concrete setting. He incorporates a substantial collection of questions and exercises throughout the text and provides two layers of hints for selected exercises at the end of each chapter. Suitable for readers unfamiliar with analysis even at the undergraduate level, this book offers an engaging and accessible account of core theoretical results of stochastic evolution equations in a way that gradually builds readers' intuition.
Publisher: CRC Press
ISBN: 9781138113589
Category :
Languages : en
Pages : 463
Book Description
Most existing books on evolution equations tend either to cover a particular class of equations in too much depth for beginners or focus on a very specific research direction. Thus, the field can be daunting for newcomers to the field who need access to preliminary material and behind-the-scenes detail. Taking an applications-oriented, conversational approach, Discovering Evolution Equations with Applications: Volume 2-Stochastic Equations provides an introductory understanding of stochastic evolution equations. The text begins with hands-on introductions to the essentials of real and stochastic analysis. It then develops the theory for homogenous one-dimensional stochastic ordinary differential equations (ODEs) and extends the theory to systems of homogenous linear stochastic ODEs. The next several chapters focus on abstract homogenous linear, nonhomogenous linear, and semi-linear stochastic evolution equations. The author also addresses the case in which the forcing term is a functional before explaining Sobolev-type stochastic evolution equations. The last chapter discusses several topics of active research. Each chapter starts with examples of various models. The author points out the similarities of the models, develops the theory involved, and then revisits the examples to reinforce the theoretical ideas in a concrete setting. He incorporates a substantial collection of questions and exercises throughout the text and provides two layers of hints for selected exercises at the end of each chapter. Suitable for readers unfamiliar with analysis even at the undergraduate level, this book offers an engaging and accessible account of core theoretical results of stochastic evolution equations in a way that gradually builds readers' intuition.
Fractional Evolution Equations and Inclusions
Author: Yong Zhou
Publisher: Academic Press
ISBN: 0128047755
Category : Mathematics
Languages : en
Pages : 296
Book Description
Fractional evolution inclusions are an important form of differential inclusions within nonlinear mathematical analysis. They are generalizations of the much more widely developed fractional evolution equations (such as time-fractional diffusion equations) seen through the lens of multivariate analysis. Compared to fractional evolution equations, research on the theory of fractional differential inclusions is however only in its initial stage of development. This is important because differential models with the fractional derivative providing an excellent instrument for the description of memory and hereditary properties, and have recently been proved valuable tools in the modeling of many physical phenomena. The fractional order models of real systems are always more adequate than the classical integer order models, since the description of some systems is more accurate when the fractional derivative is used. The advantages of fractional derivatization become evident in modeling mechanical and electrical properties of real materials, description of rheological properties of rocks and in various other fields. Such models are interesting for engineers and physicists as well as so-called pure mathematicians. Phenomena investigated in hybrid systems with dry friction, processes of controlled heat transfer, obstacle problems and others can be described with the help of various differential inclusions, both linear and nonlinear. Fractional Evolution Equations and Inclusions is devoted to a rapidly developing area of the research for fractional evolution equations & inclusions and their applications to control theory. It studies Cauchy problems for fractional evolution equations, and fractional evolution inclusions with Hille-Yosida operators. It discusses control problems for systems governed by fractional evolution equations. Finally it provides an investigation of fractional stochastic evolution inclusions in Hilbert spaces. - Systematic analysis of existence theory and topological structure of solution sets for fractional evolution inclusions and control systems - Differential models with fractional derivative provide an excellent instrument for the description of memory and hereditary properties, and their description and working will provide valuable insights into the modelling of many physical phenomena suitable for engineers and physicists - The book provides the necessary background material required to go further into the subject and explore the rich research literature
Publisher: Academic Press
ISBN: 0128047755
Category : Mathematics
Languages : en
Pages : 296
Book Description
Fractional evolution inclusions are an important form of differential inclusions within nonlinear mathematical analysis. They are generalizations of the much more widely developed fractional evolution equations (such as time-fractional diffusion equations) seen through the lens of multivariate analysis. Compared to fractional evolution equations, research on the theory of fractional differential inclusions is however only in its initial stage of development. This is important because differential models with the fractional derivative providing an excellent instrument for the description of memory and hereditary properties, and have recently been proved valuable tools in the modeling of many physical phenomena. The fractional order models of real systems are always more adequate than the classical integer order models, since the description of some systems is more accurate when the fractional derivative is used. The advantages of fractional derivatization become evident in modeling mechanical and electrical properties of real materials, description of rheological properties of rocks and in various other fields. Such models are interesting for engineers and physicists as well as so-called pure mathematicians. Phenomena investigated in hybrid systems with dry friction, processes of controlled heat transfer, obstacle problems and others can be described with the help of various differential inclusions, both linear and nonlinear. Fractional Evolution Equations and Inclusions is devoted to a rapidly developing area of the research for fractional evolution equations & inclusions and their applications to control theory. It studies Cauchy problems for fractional evolution equations, and fractional evolution inclusions with Hille-Yosida operators. It discusses control problems for systems governed by fractional evolution equations. Finally it provides an investigation of fractional stochastic evolution inclusions in Hilbert spaces. - Systematic analysis of existence theory and topological structure of solution sets for fractional evolution inclusions and control systems - Differential models with fractional derivative provide an excellent instrument for the description of memory and hereditary properties, and their description and working will provide valuable insights into the modelling of many physical phenomena suitable for engineers and physicists - The book provides the necessary background material required to go further into the subject and explore the rich research literature
Abstract Parabolic Evolution Equations and their Applications
Author: Atsushi Yagi
Publisher: Springer Science & Business Media
ISBN: 3642046312
Category : Mathematics
Languages : en
Pages : 594
Book Description
This monograph is intended to present the fundamentals of the theory of abstract parabolic evolution equations and to show how to apply to various nonlinear dif- sion equations and systems arising in science. The theory gives us a uni?ed and s- tematic treatment for concrete nonlinear diffusion models. Three main approaches are known to the abstract parabolic evolution equations, namely, the semigroup methods, the variational methods, and the methods of using operational equations. In order to keep the volume of the monograph in reasonable length, we will focus on the semigroup methods. For other two approaches, see the related references in Bibliography. The semigroup methods, which go back to the invention of the analytic se- groups in the middle of the last century, are characterized by precise formulas representing the solutions of the Cauchy problem for evolution equations. The ?tA analytic semigroup e generated by a linear operator ?A provides directly a fundamental solution to the Cauchy problem for an autonomous linear e- dU lution equation, +AU =F(t), 0
Publisher: Springer Science & Business Media
ISBN: 3642046312
Category : Mathematics
Languages : en
Pages : 594
Book Description
This monograph is intended to present the fundamentals of the theory of abstract parabolic evolution equations and to show how to apply to various nonlinear dif- sion equations and systems arising in science. The theory gives us a uni?ed and s- tematic treatment for concrete nonlinear diffusion models. Three main approaches are known to the abstract parabolic evolution equations, namely, the semigroup methods, the variational methods, and the methods of using operational equations. In order to keep the volume of the monograph in reasonable length, we will focus on the semigroup methods. For other two approaches, see the related references in Bibliography. The semigroup methods, which go back to the invention of the analytic se- groups in the middle of the last century, are characterized by precise formulas representing the solutions of the Cauchy problem for evolution equations. The ?tA analytic semigroup e generated by a linear operator ?A provides directly a fundamental solution to the Cauchy problem for an autonomous linear e- dU lution equation, +AU =F(t), 0
Group Inverses of M-Matrices and Their Applications
Author: Stephen J. Kirkland
Publisher: CRC Press
ISBN: 1439888582
Category : Mathematics
Languages : en
Pages : 334
Book Description
Group inverses for singular M-matrices are useful tools not only in matrix analysis, but also in the analysis of stochastic processes, graph theory, electrical networks, and demographic models. Group Inverses of M-Matrices and Their Applications highlights the importance and utility of the group inverses of M-matrices in several application areas. After introducing sample problems associated with Leslie matrices and stochastic matrices, the authors develop the basic algebraic and spectral properties of the group inverse of a general matrix. They then derive formulas for derivatives of matrix functions and apply the formulas to matrices arising in a demographic setting, including the class of Leslie matrices. With a focus on Markov chains, the text shows how the group inverse of an appropriate M-matrix is used in the perturbation analysis of the stationary distribution vector as well as in the derivation of a bound for the asymptotic convergence rate of the underlying Markov chain. It also illustrates how to use the group inverse to compute and analyze the mean first passage matrix for a Markov chain. The final chapters focus on the Laplacian matrix for an undirected graph and compare approaches for computing the group inverse. Collecting diverse results into a single volume, this self-contained book emphasizes the connections between problems arising in Markov chains, Perron eigenvalue analysis, and spectral graph theory. It shows how group inverses offer valuable insight into each of these areas.
Publisher: CRC Press
ISBN: 1439888582
Category : Mathematics
Languages : en
Pages : 334
Book Description
Group inverses for singular M-matrices are useful tools not only in matrix analysis, but also in the analysis of stochastic processes, graph theory, electrical networks, and demographic models. Group Inverses of M-Matrices and Their Applications highlights the importance and utility of the group inverses of M-matrices in several application areas. After introducing sample problems associated with Leslie matrices and stochastic matrices, the authors develop the basic algebraic and spectral properties of the group inverse of a general matrix. They then derive formulas for derivatives of matrix functions and apply the formulas to matrices arising in a demographic setting, including the class of Leslie matrices. With a focus on Markov chains, the text shows how the group inverse of an appropriate M-matrix is used in the perturbation analysis of the stationary distribution vector as well as in the derivation of a bound for the asymptotic convergence rate of the underlying Markov chain. It also illustrates how to use the group inverse to compute and analyze the mean first passage matrix for a Markov chain. The final chapters focus on the Laplacian matrix for an undirected graph and compare approaches for computing the group inverse. Collecting diverse results into a single volume, this self-contained book emphasizes the connections between problems arising in Markov chains, Perron eigenvalue analysis, and spectral graph theory. It shows how group inverses offer valuable insight into each of these areas.