DIII-D Research in Support of ITER.

DIII-D Research in Support of ITER. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 16

Get Book Here

Book Description
DIII-D research is providing key information for the design and operation of ITER. Discharges that simulate ITER operating scenarios in conventional H-mode, advanced inductive, hybrid, and steady state regimes have achieved normalized performance consistent with ITER's goals for fusion performance. Stationary discharges with high [beta]{sub N} and 90% noninductive current that project to Q=5 in ITER have been sustained for a current relaxation time (≈2.5 s), and high-beta wall-stabilized discharges with fully non-inductive current drive have been sustained for more than one second. Detailed issues of plasma control have been addressed, including the development of a new large-bore startup scenario for ITER. A broad research program provides the physics basis for predicting the performance of ITER. Recent key results include the discovery that the L-H power threshold is reduced with low neutral beam torque, and the development of a successful model for prediction of the H-mode pedestal height in DIII-D. Research areas with the potential to improve ITER's performance include the demonstration of ELM-free 'QH-mode' discharges with both co and counter-injection, and validation of the predicted torque generated by static, non-axisymmetric magnetic fields. New diagnostics provide detailed benchmarking of turbulent transport codes and direct measurements of the anomalous transport of fast ions by Alfven instabilities. DIII-D research also contributes to the basis for reliable operation in ITER, through active control of the chief performance-limiting instabilities. Recently, ELM suppression with resonant magnetic perturbations has been demonstrated at collisionality similar to ITER's, while simultaneous stabilization of NTMs (by localized current drive) and RWMs (by magnetic feedback) has allowed stable operation at high beta and low rotation. In research aimed at improving the lifetime of material surfaces near the plasma, recent experiments have investigated several approaches to mitigation of disruptions, including injection of low-Z gas and low-Z pellets, and have shown the conditions that minimize core impurity accumulation during radiative divertor operation. Investigation of carbon erosion, transport, and co-deposition with hydrogenic species, and methods for the removal of co-deposits, will contribute to the physics basis for initial operation of ITER with a carbon divertor.

DIII-D Research in Support of ITER.

DIII-D Research in Support of ITER. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 16

Get Book Here

Book Description
DIII-D research is providing key information for the design and operation of ITER. Discharges that simulate ITER operating scenarios in conventional H-mode, advanced inductive, hybrid, and steady state regimes have achieved normalized performance consistent with ITER's goals for fusion performance. Stationary discharges with high [beta]{sub N} and 90% noninductive current that project to Q=5 in ITER have been sustained for a current relaxation time (≈2.5 s), and high-beta wall-stabilized discharges with fully non-inductive current drive have been sustained for more than one second. Detailed issues of plasma control have been addressed, including the development of a new large-bore startup scenario for ITER. A broad research program provides the physics basis for predicting the performance of ITER. Recent key results include the discovery that the L-H power threshold is reduced with low neutral beam torque, and the development of a successful model for prediction of the H-mode pedestal height in DIII-D. Research areas with the potential to improve ITER's performance include the demonstration of ELM-free 'QH-mode' discharges with both co and counter-injection, and validation of the predicted torque generated by static, non-axisymmetric magnetic fields. New diagnostics provide detailed benchmarking of turbulent transport codes and direct measurements of the anomalous transport of fast ions by Alfven instabilities. DIII-D research also contributes to the basis for reliable operation in ITER, through active control of the chief performance-limiting instabilities. Recently, ELM suppression with resonant magnetic perturbations has been demonstrated at collisionality similar to ITER's, while simultaneous stabilization of NTMs (by localized current drive) and RWMs (by magnetic feedback) has allowed stable operation at high beta and low rotation. In research aimed at improving the lifetime of material surfaces near the plasma, recent experiments have investigated several approaches to mitigation of disruptions, including injection of low-Z gas and low-Z pellets, and have shown the conditions that minimize core impurity accumulation during radiative divertor operation. Investigation of carbon erosion, transport, and co-deposition with hydrogenic species, and methods for the removal of co-deposits, will contribute to the physics basis for initial operation of ITER with a carbon divertor.

DIII-D Research Operations Annual Report to the US Department of Energy, October 1, 1990--September 30, 1991. Magnetic Fusion Research Program

DIII-D Research Operations Annual Report to the US Department of Energy, October 1, 1990--September 30, 1991. Magnetic Fusion Research Program PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 196

Get Book Here

Book Description
This report discusses the following topics on Doublet-3 research operations: DIII-D Program Overview; Boundary Plasma Research Program/Scientific Progress; Radio Frequency Heating and Current Drive; Core Physics; DIII-D Operations; Program Development; Support Services; ITER Contributions; Burning Plasma Experiment Contributions; and Collaborative Efforts.

DIII-D Research to Address Key Challenges for ITER and Fusion Energy

DIII-D Research to Address Key Challenges for ITER and Fusion Energy PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
DIII-D has made significant advances in the scientific basis for fusion energy. The physics mechanism of resonant magnetic perturbation (RMP) edge localized mode (ELM) suppression is revealed as field penetration at the pedestal top, and reduced coil set operation was demonstrated. Disruption runaway electrons were effectively quenched by shattered pellets; runaway dissipation is explained by pitch angle scattering. Modest thermal quench radiation asymmetries are well described NIMROD modeling. With good pedestal regulation and error field correction, low torque ITER baselines have been demonstrated and shown to be compatible with an ITER test blanket module simulator. However performance and long wavelength turbulence degrade as low rotation and electron heating are approached. The alternative QH mode scenario is shown to be compatible with high Greenwald density fraction, with an edge harmonic oscillation demonstrating good impurity flushing. Discharge optimization guided by the EPED model has discovered a new super H-mode with doubled pedestal height. Lithium injection also led to wider, higher pedestals. On the path to steady state, 1 MA has been sustained fully non inductively with [beta]N = 4 and RMP ELM suppression, while a peaked current profile scenario provides attractive options for ITER and a [beta]N = 5 future reactor. Energetic particle transport is found to exhibit a critical gradient behavior. Scenarios are shown to be compatible with radiative and snowflake diverter techniques. Physics studies reveal that the transition to H mode is locked in by a rise in ion diamagnetic flows. Intrinsic rotation in the plasma edge is demonstrated to arise from kinetic losses. New 3D magnetic sensors validate linear ideal MHD, but identify issues in nonlinear simulations. Detachment, characterized in 2D with sub-eV resolution, reveals a radiation shortfall in simulations. As a result, future facility development targets burning plasma physics with torque free electron heating, the path to steady state with increased off axis currents, and a new divertor solution for fusion reactors.

DIII-D Research Operations Annual Report to the U.S. Department of Energy, October 1, 1995--September 30, 1996

DIII-D Research Operations Annual Report to the U.S. Department of Energy, October 1, 1995--September 30, 1996 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The mission of the DIII-D research program is to advance fusion energy science understanding and predictive capability and to improve and optimize the tokamak concept. A long term goal remains to integrate these products into a demonstration of high confinement, high plasma pressure (plasma[beta]), sustained long pulse operation with fusion power plant relevant heat and particle handling capability. The DIII-D program is a world recognized leader in tokamak concept improvement and a major contributor to the physics R and D needs of the International Thermonuclear Experimental Reactor (ITER). The scientific objectives of the DIII-D program are given in Table 1-2. The FY96 DIII-D research program was highly successful, as described in this report. A moderate sized tokamak, DIII-D is a world leader in tokamak innovation with exceptional performance, measured in normalized parameters.

DIII-D Research Operations. Annual Report to the US Department of Energy, October 1, 1994--September 30, 1995

DIII-D Research Operations. Annual Report to the US Department of Energy, October 1, 1994--September 30, 1995 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 75

Get Book Here

Book Description
The DIII-D research program funded by the U.S. Department of Energy (DOE) is aimed at developing the knowledge base for an economically and environmentally attractive energy source for the nation and the world. The DIII-D program mission is to advance fusion energy science understanding and predictive capability and improve the tokamak concept. The DIII-D scientific objectives are: (1) Advance understanding of fusion plasma physics and contribute to the physics base of ITER through extensive experiment and theory iteration in the following areas of fusion science - Magnetohydrodynamic (MHD) stability - Plasma turbulence and transport - Wave-particle interactions - Boundary physics plasma neutral interaction (2) Utilize scientific understanding in an integrated manner to show the tokamak potential to be - More compact by increasing plasma stability and confinement to increase the fusion power density ([Beta][tau]) - Steady-state through disruption control, handling of divertor heat and particle loads and current drive (3) Acquire understanding and experience with environmentally attractive low activation material in an operating tokamak. This report contains the research conducted over the past year in search of these scientific objectives.

DIII-D Research Operations Annual Report to the US Department of Energy, October 1, 1990--September 30, 1991

DIII-D Research Operations Annual Report to the US Department of Energy, October 1, 1990--September 30, 1991 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 196

Get Book Here

Book Description
This report discusses the following topics on Doublet-3 research operations: DIII-D Program Overview; Boundary Plasma Research Program/Scientific Progress; Radio Frequency Heating and Current Drive; Core Physics; DIII-D Operations; Program Development; Support Services; ITER Contributions; Burning Plasma Experiment Contributions; and Collaborative Efforts.

DIII-D Research Operations

DIII-D Research Operations PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 220

Get Book Here

Book Description
This report discusses the research on the following topics: DIII-D program overview; divertor and boundary research program; advanced tokamak studies; tokamak physics; operations; program development; support services; contribution to ITER physics R D; and collaborative efforts.

DIII-D Research Operations. Annual Report, October 1, 1991--September 30, 1992

DIII-D Research Operations. Annual Report, October 1, 1991--September 30, 1992 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 220

Get Book Here

Book Description
This report discusses the research on the following topics: DIII-D program overview; divertor and boundary research program; advanced tokamak studies; tokamak physics; operations; program development; support services; contribution to ITER physics R & D; and collaborative efforts.

DIII-D RESEARCH OPERATIONS ANNUAL REPORT TO THE U.S. DEPARTMENT OF ENERGY.

DIII-D RESEARCH OPERATIONS ANNUAL REPORT TO THE U.S. DEPARTMENT OF ENERGY. PDF Author: TE. EVANS
Publisher:
ISBN:
Category :
Languages : en
Pages : 71

Get Book Here

Book Description
OAK-B135 The mission of the DIII-D research program is: ''To establish the scientific basis for the optimization of the tokamak approach to fusion energy production. The program is focused on developing the ultimate potential of the tokamak by building a better fundamental understanding of the physics of plasma confinement, stability, current drive and heating in high performance discharges while utilizing new scientific discoveries and improvements in their knowledge of these basic areas to create more efficient control systems, improved plasma diagnostics and to identify new types of enhanced operating regimes with improved stability properties. In recent years, this development path has culminated in the advanced tokamak (AT) approach. An approach that has shown substantial promise for improving both the fusion yield and the energy density of a burning plasma device. While the challenges of increasing AT plasma performance levels with greater stability for longer durations are significant, the DIII-D program has an established plan that brings together both the critical resources and the expertise needed to meet these challenges. The DIII-D research staff is comprised of about 300 individuals representing 60 institutions with many years of integrated research experience in tokamak physics, engineering and technology. The DIII-D tokamak is one of the most productive, flexible and best diagnosed magnetic fusion research devices in the world. It has significantly more flexibility than most tokamaks and continues to pioneer the development of sophisticated new plasma feedback control tools that enable the explorations of new frontiers in fusion science and engineering.

An Overview of the DIII-D Program

An Overview of the DIII-D Program PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 9

Get Book Here

Book Description
The DIII-D program focuses on developing fusion physics in an integrated program of tokamak concept improvement. The intent is both to support the present ITER physics R and D and to develop more efficient concepts for the later phases of ITER and eventual power plants. Progress in this effort can be best summarized by recent results for a diverted deuterium discharge with negative central shear which reached a performance level of Q{sub DT} = 0.32. The ongoing development of the tools needed to carry out this program of understanding and optimization continues to be crucial to its success. Control of the plasma cross-sectional shape and the internal distributions of plasma current, density, and rotation has been essential to optimizing plasma performance. Advanced divertor concepts provide edge power and particle control for future devices such as ITER and provide techniques to help manage the edge power and particle flows for advanced tokamak concepts. New divertor diagnostics and improved modeling are developing excellent divertor understanding. Many of the plasma physics issues being posed by ITER are being addressed. Scrapeoff layer power flow is being characterized to provide an accurate basis for the design of reactor devices. Ongoing studies of the density limit focus on identifying ways in which ITER can achieve the required densities in excess of the Greenwald limit. Better understanding of disruptions is crucial to the design of future reactors.