Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 940
Book Description
International Aerospace Abstracts
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 940
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 940
Book Description
IEE Proceedings
Author: Institution of Electrical Engineers
Publisher:
ISBN:
Category : Electric engineering
Languages : en
Pages : 34
Book Description
Indexes IEE proceedings parts A through I
Publisher:
ISBN:
Category : Electric engineering
Languages : en
Pages : 34
Book Description
Indexes IEE proceedings parts A through I
Applied Nonlinear Control
Author: Jean-Jacques E. Slotine
Publisher:
ISBN: 9780130400499
Category : Automatic control
Languages : en
Pages : 461
Book Description
In this work, the authors present a global perspective on the methods available for analysis and design of non-linear control systems and detail specific applications. They provide a tutorial exposition of the major non-linear systems analysis techniques followed by a discussion of available non-linear design methods.
Publisher:
ISBN: 9780130400499
Category : Automatic control
Languages : en
Pages : 461
Book Description
In this work, the authors present a global perspective on the methods available for analysis and design of non-linear control systems and detail specific applications. They provide a tutorial exposition of the major non-linear systems analysis techniques followed by a discussion of available non-linear design methods.
Adaptive Control of Mechanical Manipulators
Author: John J. Craig
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 152
Book Description
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 152
Book Description
Adaptive Backstepping Control of Uncertain Systems
Author: Jing Zhou
Publisher: Springer Science & Business Media
ISBN: 3540778063
Category : Technology & Engineering
Languages : en
Pages : 246
Book Description
This book employs the powerful and popular adaptive backstepping control technology to design controllers for dynamic uncertain systems with non-smooth nonlinearities. Various cases including systems with time-varying parameters, multi-inputs and multi-outputs, backlash, dead-zone, hysteresis and saturation are considered in design and analysis. For multi-inputs and multi-outputs systems, both centralized and decentralized controls are addressed. This book not only presents recent research results including theoretical success and practical development such as the proof of system stability and the improvement of system tracking and transient performance, but also gives self-contained coverage of fundamentals on the backstepping approach illustrated with simple examples. Detail description of methodologies for the construction of adaptive laws, feedback control laws and associated Lyapunov functions is systematically provided in each case. Approaches used for the analysis of system stability and tracking and transient performances are elaborated. Two case studies are presented to show how the presented theories are applied.
Publisher: Springer Science & Business Media
ISBN: 3540778063
Category : Technology & Engineering
Languages : en
Pages : 246
Book Description
This book employs the powerful and popular adaptive backstepping control technology to design controllers for dynamic uncertain systems with non-smooth nonlinearities. Various cases including systems with time-varying parameters, multi-inputs and multi-outputs, backlash, dead-zone, hysteresis and saturation are considered in design and analysis. For multi-inputs and multi-outputs systems, both centralized and decentralized controls are addressed. This book not only presents recent research results including theoretical success and practical development such as the proof of system stability and the improvement of system tracking and transient performance, but also gives self-contained coverage of fundamentals on the backstepping approach illustrated with simple examples. Detail description of methodologies for the construction of adaptive laws, feedback control laws and associated Lyapunov functions is systematically provided in each case. Approaches used for the analysis of system stability and tracking and transient performances are elaborated. Two case studies are presented to show how the presented theories are applied.
Linear Controller Design
Author: Stephen P. Boyd
Publisher:
ISBN:
Category : Science
Languages : ja
Pages : 440
Book Description
Publisher:
ISBN:
Category : Science
Languages : ja
Pages : 440
Book Description
Fault-tolerant Control Systems
Author: Hassan Noura
Publisher: Springer Science & Business Media
ISBN: 1848826532
Category : Technology & Engineering
Languages : en
Pages : 233
Book Description
The seriesAdvancesinIndustrialControl aims to report and encourage te- nologytransfer in controlengineering. The rapid development of controlte- nology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies. . . , new challenges. Much of this devel- ment work resides in industrial reports, feasibility study papers, and the - ports of advanced collaborative projects. The series o?ers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Control system design and technology continues to develop in many d- ferent directions. One theme that the Advances in Industrial Control series is following is the application of nonlinear control design methods, and the series has some interesting new commissions in progress. However, another theme of interest is how to endow the industrial controller with the ability to overcome faults and process degradation. Fault detection and isolation is a broad ?eld with a research literature spanning several decades. This topic deals with three questions: • How is the presence of a fault detected? • What is the cause of the fault? • Where is it located? However, there has been less focus on the question of how to use the control system to accommodate and overcome the performance deterioration caused by the identi?ed sensor or actuator fault.
Publisher: Springer Science & Business Media
ISBN: 1848826532
Category : Technology & Engineering
Languages : en
Pages : 233
Book Description
The seriesAdvancesinIndustrialControl aims to report and encourage te- nologytransfer in controlengineering. The rapid development of controlte- nology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies. . . , new challenges. Much of this devel- ment work resides in industrial reports, feasibility study papers, and the - ports of advanced collaborative projects. The series o?ers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Control system design and technology continues to develop in many d- ferent directions. One theme that the Advances in Industrial Control series is following is the application of nonlinear control design methods, and the series has some interesting new commissions in progress. However, another theme of interest is how to endow the industrial controller with the ability to overcome faults and process degradation. Fault detection and isolation is a broad ?eld with a research literature spanning several decades. This topic deals with three questions: • How is the presence of a fault detected? • What is the cause of the fault? • Where is it located? However, there has been less focus on the question of how to use the control system to accommodate and overcome the performance deterioration caused by the identi?ed sensor or actuator fault.
Model-Reference Adaptive Control
Author: Nhan T. Nguyen
Publisher: Springer
ISBN: 3319563939
Category : Technology & Engineering
Languages : en
Pages : 453
Book Description
This textbook provides readers with a good working knowledge of adaptive control theory through applications. It is intended for students beginning masters or doctoral courses, and control practitioners wishing to get up to speed in the subject expeditiously. Readers are taught a wide variety of adaptive control techniques starting with simple methods and extending step-by-step to more complex ones. Stability proofs are provided for all adaptive control techniques without obfuscating reader understanding with excessive mathematics. The book begins with standard model-reference adaptive control (MRAC) for first-order, second-order, and multi-input, multi-output systems. Treatment of least-squares parameter estimation and its extension to MRAC follow, helping readers to gain a different perspective on MRAC. Function approximation with orthogonal polynomials and neural networks, and MRAC using neural networks are also covered. Robustness issues connected with MRAC are discussed, helping the student to appreciate potential pitfalls of the technique. This appreciation is encouraged by drawing parallels between various aspects of robustness and linear time-invariant systems wherever relevant. Following on from the robustness problems is material covering robust adaptive control including standard methods and detailed exposition of recent advances, in particular, the author’s work on optimal control modification. Interesting properties of the new method are illustrated in the design of adaptive systems to meet stability margins. This method has been successfully flight-tested on research aircraft, one of various flight-control applications detailed towards the end of the book along with a hybrid adaptive flight control architecture that combines direct MRAC with least-squares indirect adaptive control. In addition to the applications, understanding is encouraged by the use of end-of-chapter exercises and associated MATLAB® files. Readers will need no more than the standard mathematics for basic control theory such as differential equations and matrix algebra; the book covers the foundations of MRAC and the necessary mathematical preliminaries.
Publisher: Springer
ISBN: 3319563939
Category : Technology & Engineering
Languages : en
Pages : 453
Book Description
This textbook provides readers with a good working knowledge of adaptive control theory through applications. It is intended for students beginning masters or doctoral courses, and control practitioners wishing to get up to speed in the subject expeditiously. Readers are taught a wide variety of adaptive control techniques starting with simple methods and extending step-by-step to more complex ones. Stability proofs are provided for all adaptive control techniques without obfuscating reader understanding with excessive mathematics. The book begins with standard model-reference adaptive control (MRAC) for first-order, second-order, and multi-input, multi-output systems. Treatment of least-squares parameter estimation and its extension to MRAC follow, helping readers to gain a different perspective on MRAC. Function approximation with orthogonal polynomials and neural networks, and MRAC using neural networks are also covered. Robustness issues connected with MRAC are discussed, helping the student to appreciate potential pitfalls of the technique. This appreciation is encouraged by drawing parallels between various aspects of robustness and linear time-invariant systems wherever relevant. Following on from the robustness problems is material covering robust adaptive control including standard methods and detailed exposition of recent advances, in particular, the author’s work on optimal control modification. Interesting properties of the new method are illustrated in the design of adaptive systems to meet stability margins. This method has been successfully flight-tested on research aircraft, one of various flight-control applications detailed towards the end of the book along with a hybrid adaptive flight control architecture that combines direct MRAC with least-squares indirect adaptive control. In addition to the applications, understanding is encouraged by the use of end-of-chapter exercises and associated MATLAB® files. Readers will need no more than the standard mathematics for basic control theory such as differential equations and matrix algebra; the book covers the foundations of MRAC and the necessary mathematical preliminaries.
Introduction to Modeling and Control of Internal Combustion Engine Systems
Author: Lino Guzzella
Publisher: Springer Science & Business Media
ISBN: 3662080036
Category : Technology & Engineering
Languages : en
Pages : 303
Book Description
Internal combustion engines still have a potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. These goals can be achieved with help of control systems. Modeling and Control of Internal Combustion Engines (ICE) addresses these issues by offering an introduction to cost-effective model-based control system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed in the text and selected feedforward and feedback control problems are discussed. The appendix contains a summary of the most important controller analysis and design methods, and a case study that analyzes a simplified idle-speed control problem. The book is written for students interested in the design of classical and novel ICE control systems.
Publisher: Springer Science & Business Media
ISBN: 3662080036
Category : Technology & Engineering
Languages : en
Pages : 303
Book Description
Internal combustion engines still have a potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. These goals can be achieved with help of control systems. Modeling and Control of Internal Combustion Engines (ICE) addresses these issues by offering an introduction to cost-effective model-based control system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed in the text and selected feedforward and feedback control problems are discussed. The appendix contains a summary of the most important controller analysis and design methods, and a case study that analyzes a simplified idle-speed control problem. The book is written for students interested in the design of classical and novel ICE control systems.
Windup in Control
Author: Peter Hippe
Publisher: Springer Science & Business Media
ISBN: 184628323X
Category : Technology & Engineering
Languages : en
Pages : 324
Book Description
Actuator saturation is probably the most frequent nonlinearity encountered in control applications. Input saturation leads to controller windup, removable by structural modification during compensator realization and plant windup which calls for additional dynamics. This book presents solutions to the windup prevention problem for stable and unstable single-input-single-output and multiple-input-multiple-output (MIMO) systems.
Publisher: Springer Science & Business Media
ISBN: 184628323X
Category : Technology & Engineering
Languages : en
Pages : 324
Book Description
Actuator saturation is probably the most frequent nonlinearity encountered in control applications. Input saturation leads to controller windup, removable by structural modification during compensator realization and plant windup which calls for additional dynamics. This book presents solutions to the windup prevention problem for stable and unstable single-input-single-output and multiple-input-multiple-output (MIMO) systems.