Author: Kiyosi Itô
Publisher: Springer Science & Business Media
ISBN: 3642620256
Category : Mathematics
Languages : en
Pages : 341
Book Description
Since its first publication in 1965 in the series Grundlehren der mathematischen Wissenschaften this book has had a profound and enduring influence on research into the stochastic processes associated with diffusion phenomena. Generations of mathematicians have appreciated the clarity of the descriptions given of one- or more- dimensional diffusion processes and the mathematical insight provided into Brownian motion. Now, with its republication in the Classics in Mathematics it is hoped that a new generation will be able to enjoy the classic text of Itô and McKean.
Diffusion Processes and their Sample Paths
Author: Kiyosi Itô
Publisher: Springer Science & Business Media
ISBN: 3642620256
Category : Mathematics
Languages : en
Pages : 341
Book Description
Since its first publication in 1965 in the series Grundlehren der mathematischen Wissenschaften this book has had a profound and enduring influence on research into the stochastic processes associated with diffusion phenomena. Generations of mathematicians have appreciated the clarity of the descriptions given of one- or more- dimensional diffusion processes and the mathematical insight provided into Brownian motion. Now, with its republication in the Classics in Mathematics it is hoped that a new generation will be able to enjoy the classic text of Itô and McKean.
Publisher: Springer Science & Business Media
ISBN: 3642620256
Category : Mathematics
Languages : en
Pages : 341
Book Description
Since its first publication in 1965 in the series Grundlehren der mathematischen Wissenschaften this book has had a profound and enduring influence on research into the stochastic processes associated with diffusion phenomena. Generations of mathematicians have appreciated the clarity of the descriptions given of one- or more- dimensional diffusion processes and the mathematical insight provided into Brownian motion. Now, with its republication in the Classics in Mathematics it is hoped that a new generation will be able to enjoy the classic text of Itô and McKean.
Diffusion Processes and Their Sample Paths
Author: Kiyosi Itō
Publisher:
ISBN:
Category : Brownian motion processes
Languages : en
Pages : 352
Book Description
Publisher:
ISBN:
Category : Brownian motion processes
Languages : en
Pages : 352
Book Description
Diffusion Processes and their Sample Paths
Author: Kiyosi Itô
Publisher: Springer
ISBN: 9783540033028
Category : Mathematics
Languages : en
Pages : 323
Book Description
Since its first publication in 1965 in the series Grundlehren der mathematischen Wissenschaften this book has had a profound and enduring influence on research into the stochastic processes associated with diffusion phenomena. Generations of mathematicians have appreciated the clarity of the descriptions given of one- or more- dimensional diffusion processes and the mathematical insight provided into Brownian motion. Now, with its republication in the Classics in Mathematics it is hoped that a new generation will be able to enjoy the classic text of Itô and McKean.
Publisher: Springer
ISBN: 9783540033028
Category : Mathematics
Languages : en
Pages : 323
Book Description
Since its first publication in 1965 in the series Grundlehren der mathematischen Wissenschaften this book has had a profound and enduring influence on research into the stochastic processes associated with diffusion phenomena. Generations of mathematicians have appreciated the clarity of the descriptions given of one- or more- dimensional diffusion processes and the mathematical insight provided into Brownian motion. Now, with its republication in the Classics in Mathematics it is hoped that a new generation will be able to enjoy the classic text of Itô and McKean.
Diffusion Processes and Related Topics in Biology
Author: Luigi M. Ricciardi
Publisher: Springer Science & Business Media
ISBN: 364293059X
Category : Mathematics
Languages : en
Pages : 207
Book Description
These notes are based on a one-quarter course given at the Department of Biophysics and Theoretical Biology of the University of Chicago in 1916. The course was directed to graduate students in the Division of Biological Sciences with interests in population biology and neurobiology. Only a slight acquaintance with probability and differential equations is required of the reader. Exercises are interwoven with the text to encourage the reader to play a more active role and thus facilitate his digestion of the material. One aim of these notes is to provide a heuristic approach, using as little mathematics as possible, to certain aspects of the theory of stochastic processes that are being increasingly employed in some of the population biol ogy and neurobiology literature. While the subject may be classical, the nov elty here lies in the approach and point of view, particularly in the applica tions such as the approach to the neuronal firing problem and its related dif fusion approximations. It is a pleasure to thank Professors Richard C. Lewontin and Arnold J.F. Siegert for their interest and support, and Mrs. Angell Pasley for her excellent and careful typing. I . PRELIMINARIES 1. Terminology and Examples Consider an experiment specified by: a) the experiment's outcomes, ~, forming the space S; b) certain subsets of S (called events) and by the probabilities of these events.
Publisher: Springer Science & Business Media
ISBN: 364293059X
Category : Mathematics
Languages : en
Pages : 207
Book Description
These notes are based on a one-quarter course given at the Department of Biophysics and Theoretical Biology of the University of Chicago in 1916. The course was directed to graduate students in the Division of Biological Sciences with interests in population biology and neurobiology. Only a slight acquaintance with probability and differential equations is required of the reader. Exercises are interwoven with the text to encourage the reader to play a more active role and thus facilitate his digestion of the material. One aim of these notes is to provide a heuristic approach, using as little mathematics as possible, to certain aspects of the theory of stochastic processes that are being increasingly employed in some of the population biol ogy and neurobiology literature. While the subject may be classical, the nov elty here lies in the approach and point of view, particularly in the applica tions such as the approach to the neuronal firing problem and its related dif fusion approximations. It is a pleasure to thank Professors Richard C. Lewontin and Arnold J.F. Siegert for their interest and support, and Mrs. Angell Pasley for her excellent and careful typing. I . PRELIMINARIES 1. Terminology and Examples Consider an experiment specified by: a) the experiment's outcomes, ~, forming the space S; b) certain subsets of S (called events) and by the probabilities of these events.