Author: Chris J. Isham
Publisher: Allied Publishers
ISBN: 9788177643169
Category : Geometry, Differential
Languages : en
Pages : 308
Book Description
Modern Differential Geometry for Physicists
Author: Chris J. Isham
Publisher: Allied Publishers
ISBN: 9788177643169
Category : Geometry, Differential
Languages : en
Pages : 308
Book Description
Publisher: Allied Publishers
ISBN: 9788177643169
Category : Geometry, Differential
Languages : en
Pages : 308
Book Description
Differential Forms and the Geometry of General Relativity
Author: Tevian Dray
Publisher: CRC Press
ISBN: 1466510005
Category : Mathematics
Languages : en
Pages : 324
Book Description
Differential Forms and the Geometry of General Relativity provides readers with a coherent path to understanding relativity. Requiring little more than calculus and some linear algebra, it helps readers learn just enough differential geometry to grasp the basics of general relativity. The book contains two intertwined but distinct halves. Designed for advanced undergraduate or beginning graduate students in mathematics or physics, most of the text requires little more than familiarity with calculus and linear algebra. The first half presents an introduction to general relativity that describes some of the surprising implications of relativity without introducing more formalism than necessary. This nonstandard approach uses differential forms rather than tensor calculus and minimizes the use of "index gymnastics" as much as possible. The second half of the book takes a more detailed look at the mathematics of differential forms. It covers the theory behind the mathematics used in the first half by emphasizing a conceptual understanding instead of formal proofs. The book provides a language to describe curvature, the key geometric idea in general relativity.
Publisher: CRC Press
ISBN: 1466510005
Category : Mathematics
Languages : en
Pages : 324
Book Description
Differential Forms and the Geometry of General Relativity provides readers with a coherent path to understanding relativity. Requiring little more than calculus and some linear algebra, it helps readers learn just enough differential geometry to grasp the basics of general relativity. The book contains two intertwined but distinct halves. Designed for advanced undergraduate or beginning graduate students in mathematics or physics, most of the text requires little more than familiarity with calculus and linear algebra. The first half presents an introduction to general relativity that describes some of the surprising implications of relativity without introducing more formalism than necessary. This nonstandard approach uses differential forms rather than tensor calculus and minimizes the use of "index gymnastics" as much as possible. The second half of the book takes a more detailed look at the mathematics of differential forms. It covers the theory behind the mathematics used in the first half by emphasizing a conceptual understanding instead of formal proofs. The book provides a language to describe curvature, the key geometric idea in general relativity.
Spacetime
Author: Marcus Kriele
Publisher: Springer Science & Business Media
ISBN: 3540483543
Category : Science
Languages : en
Pages : 444
Book Description
One of the most of exciting aspects is the general relativity pred- tion of black holes and the Such Big Bang. predictions gained weight the theorems through Penrose. singularity pioneered In various by te- books on theorems general relativity singularity are and then presented used to that black holes exist and that the argue universe started with a To date what has big been is bang. a critical of what lacking analysis these theorems predict-’ We of really give a proof a typical singul- theorem and this ity use theorem to illustrate problems arising through the of possibilities violations" and "causality weak "shell very crossing These singularities". add to the problems weight of view that the point theorems alone singularity are not sufficient to the existence of predict physical singularities. The mathematical theme of the book In order to both solid gain a of and intuition understanding good for any mathematical theory, one,should to realise it as model of try a a fam- iar non-mathematical theories have had concept. Physical an especially the important on of and impact development mathematics, conversely various modern theories physical rather require sophisticated mathem- ics for their formulation. both and mathematics Today, physics are so that it is often difficult complex to master the theories in both very s- in the of jects. However, case differential pseudo-Riemannian geometry or the general relativity between and mathematics relationship physics is and it is therefore especially close, to from interd- possible profit an ciplinary approach.
Publisher: Springer Science & Business Media
ISBN: 3540483543
Category : Science
Languages : en
Pages : 444
Book Description
One of the most of exciting aspects is the general relativity pred- tion of black holes and the Such Big Bang. predictions gained weight the theorems through Penrose. singularity pioneered In various by te- books on theorems general relativity singularity are and then presented used to that black holes exist and that the argue universe started with a To date what has big been is bang. a critical of what lacking analysis these theorems predict-’ We of really give a proof a typical singul- theorem and this ity use theorem to illustrate problems arising through the of possibilities violations" and "causality weak "shell very crossing These singularities". add to the problems weight of view that the point theorems alone singularity are not sufficient to the existence of predict physical singularities. The mathematical theme of the book In order to both solid gain a of and intuition understanding good for any mathematical theory, one,should to realise it as model of try a a fam- iar non-mathematical theories have had concept. Physical an especially the important on of and impact development mathematics, conversely various modern theories physical rather require sophisticated mathem- ics for their formulation. both and mathematics Today, physics are so that it is often difficult complex to master the theories in both very s- in the of jects. However, case differential pseudo-Riemannian geometry or the general relativity between and mathematics relationship physics is and it is therefore especially close, to from interd- possible profit an ciplinary approach.
Manifolds, Tensors and Forms
Author: Paul Renteln
Publisher: Cambridge University Press
ISBN: 1107042194
Category : Mathematics
Languages : en
Pages : 343
Book Description
Comprehensive treatment of the essentials of modern differential geometry and topology for graduate students in mathematics and the physical sciences.
Publisher: Cambridge University Press
ISBN: 1107042194
Category : Mathematics
Languages : en
Pages : 343
Book Description
Comprehensive treatment of the essentials of modern differential geometry and topology for graduate students in mathematics and the physical sciences.
Differential Geometry and Relativity
Author: M. Cahen
Publisher: Springer Science & Business Media
ISBN: 9789027707451
Category : Gardening
Languages : en
Pages : 324
Book Description
On the sixtieth birthday of Andre Lichnerowicz a number of his friends, students, and coworkers decided to celebrate this event by preparing a jubilee volume of contributed articles in the two main fields of research marked by Lichnerowicz's work: differential geometry and mathematical physics. It was impossible to reflect in a single book the great variety of subjects tackled by Lichnerowicz. We hope that this book reflects some of the present trends of fields in which he worked, and some of the subjects to which he contributed in his long - and not yet finished - career. This career was very much marked by the influence of his masters, Elie Cartan who introduced him to research in mathematics, mainly in geometry and its relations with mathematical physics, and Georges Darmois who developed his interest in mechanics and physics, especially the theory of relativity and electromagnetism. This combination, and his personal talent, made him a natural scientific heir and continuator of the French mathematical physics school in the tradition of Henri Poincare. Some of his works would even be best qualified by a new field name, that of physical mathematics: branches of pure mathematics entirely motivated by physics.
Publisher: Springer Science & Business Media
ISBN: 9789027707451
Category : Gardening
Languages : en
Pages : 324
Book Description
On the sixtieth birthday of Andre Lichnerowicz a number of his friends, students, and coworkers decided to celebrate this event by preparing a jubilee volume of contributed articles in the two main fields of research marked by Lichnerowicz's work: differential geometry and mathematical physics. It was impossible to reflect in a single book the great variety of subjects tackled by Lichnerowicz. We hope that this book reflects some of the present trends of fields in which he worked, and some of the subjects to which he contributed in his long - and not yet finished - career. This career was very much marked by the influence of his masters, Elie Cartan who introduced him to research in mathematics, mainly in geometry and its relations with mathematical physics, and Georges Darmois who developed his interest in mechanics and physics, especially the theory of relativity and electromagnetism. This combination, and his personal talent, made him a natural scientific heir and continuator of the French mathematical physics school in the tradition of Henri Poincare. Some of his works would even be best qualified by a new field name, that of physical mathematics: branches of pure mathematics entirely motivated by physics.
Differential Geometry and Relativity Theory
Author: RichardL. Faber
Publisher: Routledge
ISBN: 1351455141
Category : Mathematics
Languages : en
Pages : 280
Book Description
Differentilil Geometry and Relativity Theory: An Introduction approaches relativity asa geometric theory of space and time in which gravity is a manifestation of space-timecurvature, rathe1 than a force. Uniting differential geometry and both special and generalrelativity in a single source, this easy-to-understand text opens the general theory of relativityto mathematics majors having a backgr.ound only in multivariable calculus and linearalgebra.The book offers a broad overview of the physical foundations and mathematical details ofrelativity, and presents concrete physical interpretations of numerous abstract concepts inRiemannian geometry. The work is profusely illustrated with diagrams aiding in the understandingof proofs and explanations. Appendices feature important material on vectoranalysis and hyperbolic functions.Differential Geometry and Relativity Theory: An Introduction serves as the ideal textfor high-level undergraduate couues in mathematics and physics, and includes a solutionsmanual augmenting classroom study. It is an invaluable reference for mathematicians interestedin differential and IUemannian geometry, or the special and general theories ofrelativity
Publisher: Routledge
ISBN: 1351455141
Category : Mathematics
Languages : en
Pages : 280
Book Description
Differentilil Geometry and Relativity Theory: An Introduction approaches relativity asa geometric theory of space and time in which gravity is a manifestation of space-timecurvature, rathe1 than a force. Uniting differential geometry and both special and generalrelativity in a single source, this easy-to-understand text opens the general theory of relativityto mathematics majors having a backgr.ound only in multivariable calculus and linearalgebra.The book offers a broad overview of the physical foundations and mathematical details ofrelativity, and presents concrete physical interpretations of numerous abstract concepts inRiemannian geometry. The work is profusely illustrated with diagrams aiding in the understandingof proofs and explanations. Appendices feature important material on vectoranalysis and hyperbolic functions.Differential Geometry and Relativity Theory: An Introduction serves as the ideal textfor high-level undergraduate couues in mathematics and physics, and includes a solutionsmanual augmenting classroom study. It is an invaluable reference for mathematicians interestedin differential and IUemannian geometry, or the special and general theories ofrelativity
Differential and Riemannian Geometry
Author: Detlef Laugwitz
Publisher: Academic Press
ISBN: 1483263983
Category : Mathematics
Languages : en
Pages : 251
Book Description
Differential and Riemannian Geometry focuses on the methodologies, calculations, applications, and approaches involved in differential and Riemannian geometry. The book first offers information on local differential geometry of space curves and surfaces and tensor calculus and Riemannian geometry. Discussions focus on tensor algebra and analysis, concept of a differentiable manifold, geometry of a space with affine connection, intrinsic geometry of surfaces, curvature of surfaces, and surfaces and curves on surfaces. The manuscript then examines further development and applications of Riemannian geometry and selections from differential geometry in the large, including curves and surfaces in the large, spaces of constant curvature and non-Euclidean geometry, Riemannian spaces and analytical dynamics, and metric differential geometry and characterizations of Riemannian geometry. The publication elaborates on prerequisite theorems of analysis, as well as the existence and uniqueness theorem for ordinary first-order differential equations and systems of equations and integrability theory for systems of first-order partial differential equations. The book is a valuable reference for researchers interested in differential and Riemannian geometry.
Publisher: Academic Press
ISBN: 1483263983
Category : Mathematics
Languages : en
Pages : 251
Book Description
Differential and Riemannian Geometry focuses on the methodologies, calculations, applications, and approaches involved in differential and Riemannian geometry. The book first offers information on local differential geometry of space curves and surfaces and tensor calculus and Riemannian geometry. Discussions focus on tensor algebra and analysis, concept of a differentiable manifold, geometry of a space with affine connection, intrinsic geometry of surfaces, curvature of surfaces, and surfaces and curves on surfaces. The manuscript then examines further development and applications of Riemannian geometry and selections from differential geometry in the large, including curves and surfaces in the large, spaces of constant curvature and non-Euclidean geometry, Riemannian spaces and analytical dynamics, and metric differential geometry and characterizations of Riemannian geometry. The publication elaborates on prerequisite theorems of analysis, as well as the existence and uniqueness theorem for ordinary first-order differential equations and systems of equations and integrability theory for systems of first-order partial differential equations. The book is a valuable reference for researchers interested in differential and Riemannian geometry.
General Relativity for Mathematicians
Author: R.K. Sachs
Publisher: Springer Science & Business Media
ISBN: 1461299039
Category : Mathematics
Languages : en
Pages : 302
Book Description
This is a book about physics, written for mathematicians. The readers we have in mind can be roughly described as those who: I. are mathematics graduate students with some knowledge of global differential geometry 2. have had the equivalent of freshman physics, and find popular accounts of astrophysics and cosmology interesting 3. appreciate mathematical elarity, but are willing to accept physical motiva tions for the mathematics in place of mathematical ones 4. are willing to spend time and effort mastering certain technical details, such as those in Section 1. 1. Each book disappoints so me readers. This one will disappoint: 1. physicists who want to use this book as a first course on differential geometry 2. mathematicians who think Lorentzian manifolds are wholly similar to Riemannian ones, or that, given a sufficiently good mathematical back ground, the essentials of a subject !ike cosmology can be learned without so me hard work on boring detaiis 3. those who believe vague philosophical arguments have more than historical and heuristic significance, that general relativity should somehow be "proved," or that axiomatization of this subject is useful 4. those who want an encyclopedic treatment (the books by Hawking-Ellis [1], Penrose [1], Weinberg [1], and Misner-Thorne-Wheeler [I] go further into the subject than we do; see also the survey article, Sachs-Wu [1]). 5. mathematicians who want to learn quantum physics or unified fieId theory (unfortunateIy, quantum physics texts all seem either to be for physicists, or merely concerned with formaI mathematics).
Publisher: Springer Science & Business Media
ISBN: 1461299039
Category : Mathematics
Languages : en
Pages : 302
Book Description
This is a book about physics, written for mathematicians. The readers we have in mind can be roughly described as those who: I. are mathematics graduate students with some knowledge of global differential geometry 2. have had the equivalent of freshman physics, and find popular accounts of astrophysics and cosmology interesting 3. appreciate mathematical elarity, but are willing to accept physical motiva tions for the mathematics in place of mathematical ones 4. are willing to spend time and effort mastering certain technical details, such as those in Section 1. 1. Each book disappoints so me readers. This one will disappoint: 1. physicists who want to use this book as a first course on differential geometry 2. mathematicians who think Lorentzian manifolds are wholly similar to Riemannian ones, or that, given a sufficiently good mathematical back ground, the essentials of a subject !ike cosmology can be learned without so me hard work on boring detaiis 3. those who believe vague philosophical arguments have more than historical and heuristic significance, that general relativity should somehow be "proved," or that axiomatization of this subject is useful 4. those who want an encyclopedic treatment (the books by Hawking-Ellis [1], Penrose [1], Weinberg [1], and Misner-Thorne-Wheeler [I] go further into the subject than we do; see also the survey article, Sachs-Wu [1]). 5. mathematicians who want to learn quantum physics or unified fieId theory (unfortunateIy, quantum physics texts all seem either to be for physicists, or merely concerned with formaI mathematics).
From Riemann to Differential Geometry and Relativity
Author: Lizhen Ji
Publisher: Springer
ISBN: 3319600397
Category : Mathematics
Languages : en
Pages : 664
Book Description
This book explores the work of Bernhard Riemann and its impact on mathematics, philosophy and physics. It features contributions from a range of fields, historical expositions, and selected research articles that were motivated by Riemann’s ideas and demonstrate their timelessness. The editors are convinced of the tremendous value of going into Riemann’s work in depth, investigating his original ideas, integrating them into a broader perspective, and establishing ties with modern science and philosophy. Accordingly, the contributors to this volume are mathematicians, physicists, philosophers and historians of science. The book offers a unique resource for students and researchers in the fields of mathematics, physics and philosophy, historians of science, and more generally to a wide range of readers interested in the history of ideas.
Publisher: Springer
ISBN: 3319600397
Category : Mathematics
Languages : en
Pages : 664
Book Description
This book explores the work of Bernhard Riemann and its impact on mathematics, philosophy and physics. It features contributions from a range of fields, historical expositions, and selected research articles that were motivated by Riemann’s ideas and demonstrate their timelessness. The editors are convinced of the tremendous value of going into Riemann’s work in depth, investigating his original ideas, integrating them into a broader perspective, and establishing ties with modern science and philosophy. Accordingly, the contributors to this volume are mathematicians, physicists, philosophers and historians of science. The book offers a unique resource for students and researchers in the fields of mathematics, physics and philosophy, historians of science, and more generally to a wide range of readers interested in the history of ideas.
Foundations of General Relativity
Author: Klaas Landsman
Publisher: Radboud University Press
ISBN: 9083178927
Category : Science
Languages : en
Pages : 394
Book Description
This book, dedicated to Roger Penrose, is a second, mathematically oriented course in general relativity. It contains extensive references and occasional excursions in the history and philosophy of gravity, including a relatively lengthy historical introduction. The book is intended for all students of general relativity of any age and orientation who have a background including at least first courses in special and general relativity, differential geometry, and topology. The material is developed in such a way that through the last two chapters the reader may acquire a taste of the modern mathematical study of black holes initiated by Penrose, Hawking, and others, as further influenced by the initial-value or PDE approach to general relativity. Successful readers might be able to begin reading research papers on black holes, especially in mathematical physics and in the philosophy of physics. The chapters are: Historical introduction, General differential geometry, Metric differential geometry, Curvature, Geodesics and causal structure, The singularity theorems of Hawking and Penrose, The Einstein equations, The 3+1 split of space-time, Black holes I: Exact solutions, and Black holes II: General theory. These are followed by two appendices containing background on Lie groups, Lie algebras, & constant curvature, and on Formal PDE theory.
Publisher: Radboud University Press
ISBN: 9083178927
Category : Science
Languages : en
Pages : 394
Book Description
This book, dedicated to Roger Penrose, is a second, mathematically oriented course in general relativity. It contains extensive references and occasional excursions in the history and philosophy of gravity, including a relatively lengthy historical introduction. The book is intended for all students of general relativity of any age and orientation who have a background including at least first courses in special and general relativity, differential geometry, and topology. The material is developed in such a way that through the last two chapters the reader may acquire a taste of the modern mathematical study of black holes initiated by Penrose, Hawking, and others, as further influenced by the initial-value or PDE approach to general relativity. Successful readers might be able to begin reading research papers on black holes, especially in mathematical physics and in the philosophy of physics. The chapters are: Historical introduction, General differential geometry, Metric differential geometry, Curvature, Geodesics and causal structure, The singularity theorems of Hawking and Penrose, The Einstein equations, The 3+1 split of space-time, Black holes I: Exact solutions, and Black holes II: General theory. These are followed by two appendices containing background on Lie groups, Lie algebras, & constant curvature, and on Formal PDE theory.