Author: David Betounes
Publisher: Springer Science & Business Media
ISBN: 1475749716
Category : Mathematics
Languages : en
Pages : 686
Book Description
This book provides a comprehensive introduction to the theory of ordinary differential equations with a focus on mechanics and dynamical systems as important applications of the theory. The text is written to be used in the traditional way or in a more applied way. The accompanying CD contains Maple worksheets for the exercises, and special Maple code for performing various tasks. In addition to its use in a traditional one or two semester graduate course in mathematics, the book is organized to be used for interdisciplinary courses in applied mathematics, physics, and engineering.
Differential Equations: Theory and Applications
Author: David Betounes
Publisher: Springer Science & Business Media
ISBN: 1475749716
Category : Mathematics
Languages : en
Pages : 686
Book Description
This book provides a comprehensive introduction to the theory of ordinary differential equations with a focus on mechanics and dynamical systems as important applications of the theory. The text is written to be used in the traditional way or in a more applied way. The accompanying CD contains Maple worksheets for the exercises, and special Maple code for performing various tasks. In addition to its use in a traditional one or two semester graduate course in mathematics, the book is organized to be used for interdisciplinary courses in applied mathematics, physics, and engineering.
Publisher: Springer Science & Business Media
ISBN: 1475749716
Category : Mathematics
Languages : en
Pages : 686
Book Description
This book provides a comprehensive introduction to the theory of ordinary differential equations with a focus on mechanics and dynamical systems as important applications of the theory. The text is written to be used in the traditional way or in a more applied way. The accompanying CD contains Maple worksheets for the exercises, and special Maple code for performing various tasks. In addition to its use in a traditional one or two semester graduate course in mathematics, the book is organized to be used for interdisciplinary courses in applied mathematics, physics, and engineering.
Engineering Differential Equations
Author: Bill Goodwine
Publisher: Springer Science & Business Media
ISBN: 1441979190
Category : Mathematics
Languages : en
Pages : 762
Book Description
This book is a comprehensive treatment of engineering undergraduate differential equations as well as linear vibrations and feedback control. While this material has traditionally been separated into different courses in undergraduate engineering curricula. This text provides a streamlined and efficient treatment of material normally covered in three courses. Ultimately, engineering students study mathematics in order to be able to solve problems within the engineering realm. Engineering Differential Equations: Theory and Applications guides students to approach the mathematical theory with much greater interest and enthusiasm by teaching the theory together with applications. Additionally, it includes an abundance of detailed examples. Appendices include numerous C and FORTRAN example programs. This book is intended for engineering undergraduate students, particularly aerospace and mechanical engineers and students in other disciplines concerned with mechanical systems analysis and control. Prerequisites include basic and advanced calculus with an introduction to linear algebra.
Publisher: Springer Science & Business Media
ISBN: 1441979190
Category : Mathematics
Languages : en
Pages : 762
Book Description
This book is a comprehensive treatment of engineering undergraduate differential equations as well as linear vibrations and feedback control. While this material has traditionally been separated into different courses in undergraduate engineering curricula. This text provides a streamlined and efficient treatment of material normally covered in three courses. Ultimately, engineering students study mathematics in order to be able to solve problems within the engineering realm. Engineering Differential Equations: Theory and Applications guides students to approach the mathematical theory with much greater interest and enthusiasm by teaching the theory together with applications. Additionally, it includes an abundance of detailed examples. Appendices include numerous C and FORTRAN example programs. This book is intended for engineering undergraduate students, particularly aerospace and mechanical engineers and students in other disciplines concerned with mechanical systems analysis and control. Prerequisites include basic and advanced calculus with an introduction to linear algebra.
Theory and Applications of Partial Functional Differential Equations
Author: Jianhong Wu
Publisher: Springer Science & Business Media
ISBN: 1461240506
Category : Mathematics
Languages : en
Pages : 441
Book Description
Abstract semilinear functional differential equations arise from many biological, chemical, and physical systems which are characterized by both spatial and temporal variables and exhibit various spatio-temporal patterns. The aim of this book is to provide an introduction of the qualitative theory and applications of these equations from the dynamical systems point of view. The required prerequisites for that book are at a level of a graduate student. The style of presentation will be appealing to people trained and interested in qualitative theory of ordinary and functional differential equations.
Publisher: Springer Science & Business Media
ISBN: 1461240506
Category : Mathematics
Languages : en
Pages : 441
Book Description
Abstract semilinear functional differential equations arise from many biological, chemical, and physical systems which are characterized by both spatial and temporal variables and exhibit various spatio-temporal patterns. The aim of this book is to provide an introduction of the qualitative theory and applications of these equations from the dynamical systems point of view. The required prerequisites for that book are at a level of a graduate student. The style of presentation will be appealing to people trained and interested in qualitative theory of ordinary and functional differential equations.
Differential Equations: Techniques, Theory, and Applications
Author: Barbara D. MacCluer
Publisher: American Mathematical Soc.
ISBN: 1470447975
Category : Mathematics
Languages : en
Pages : 890
Book Description
Differential Equations: Techniques, Theory, and Applications is designed for a modern first course in differential equations either one or two semesters in length. The organization of the book interweaves the three components in the subtitle, with each building on and supporting the others. Techniques include not just computational methods for producing solutions to differential equations, but also qualitative methods for extracting conceptual information about differential equations and the systems modeled by them. Theory is developed as a means of organizing, understanding, and codifying general principles. Applications show the usefulness of the subject as a whole and heighten interest in both solution techniques and theory. Formal proofs are included in cases where they enhance core understanding; otherwise, they are replaced by informal justifications containing key ideas of a proof in a more conversational format. Applications are drawn from a wide variety of fields: those in physical science and engineering are prominent, of course, but models from biology, medicine, ecology, economics, and sports are also featured. The 1,400+ exercises are especially compelling. They range from routine calculations to large-scale projects. The more difficult problems, both theoretical and applied, are typically presented in manageable steps. The hundreds of meticulously detailed modeling problems were deliberately designed along pedagogical principles found especially effective in the MAA study Characteristics of Successful Calculus Programs, namely, that asking students to work problems that require them to grapple with concepts (or even proofs) and do modeling activities is key to successful student experiences and retention in STEM programs. The exposition itself is exceptionally readable, rigorous yet conversational. Students will find it inviting and approachable. The text supports many different styles of pedagogy from traditional lecture to a flipped classroom model. The availability of a computer algebra system is not assumed, but there are many opportunities to incorporate the use of one.
Publisher: American Mathematical Soc.
ISBN: 1470447975
Category : Mathematics
Languages : en
Pages : 890
Book Description
Differential Equations: Techniques, Theory, and Applications is designed for a modern first course in differential equations either one or two semesters in length. The organization of the book interweaves the three components in the subtitle, with each building on and supporting the others. Techniques include not just computational methods for producing solutions to differential equations, but also qualitative methods for extracting conceptual information about differential equations and the systems modeled by them. Theory is developed as a means of organizing, understanding, and codifying general principles. Applications show the usefulness of the subject as a whole and heighten interest in both solution techniques and theory. Formal proofs are included in cases where they enhance core understanding; otherwise, they are replaced by informal justifications containing key ideas of a proof in a more conversational format. Applications are drawn from a wide variety of fields: those in physical science and engineering are prominent, of course, but models from biology, medicine, ecology, economics, and sports are also featured. The 1,400+ exercises are especially compelling. They range from routine calculations to large-scale projects. The more difficult problems, both theoretical and applied, are typically presented in manageable steps. The hundreds of meticulously detailed modeling problems were deliberately designed along pedagogical principles found especially effective in the MAA study Characteristics of Successful Calculus Programs, namely, that asking students to work problems that require them to grapple with concepts (or even proofs) and do modeling activities is key to successful student experiences and retention in STEM programs. The exposition itself is exceptionally readable, rigorous yet conversational. Students will find it inviting and approachable. The text supports many different styles of pedagogy from traditional lecture to a flipped classroom model. The availability of a computer algebra system is not assumed, but there are many opportunities to incorporate the use of one.
Applied Theory of Functional Differential Equations
Author: V. Kolmanovskii
Publisher: Springer Science & Business Media
ISBN: 9401580847
Category : Mathematics
Languages : en
Pages : 246
Book Description
This volume provides an introduction to the properties of functional differential equations and their applications in diverse fields such as immunology, nuclear power generation, heat transfer, signal processing, medicine and economics. In particular, it deals with problems and methods relating to systems having a memory (hereditary systems). The book contains eight chapters. Chapter 1 explains where functional differential equations come from and what sort of problems arise in applications. Chapter 2 gives a broad introduction to the basic principle involved and deals with systems having discrete and distributed delay. Chapters 3-5 are devoted to stability problems for retarded, neutral and stochastic functional differential equations. Problems of optimal control and estimation are considered in Chapters 6-8. For applied mathematicians, engineers, and physicists whose work involves mathematical modeling of hereditary systems. This volume can also be recommended as a supplementary text for graduate students who wish to become better acquainted with the properties and applications of functional differential equations.
Publisher: Springer Science & Business Media
ISBN: 9401580847
Category : Mathematics
Languages : en
Pages : 246
Book Description
This volume provides an introduction to the properties of functional differential equations and their applications in diverse fields such as immunology, nuclear power generation, heat transfer, signal processing, medicine and economics. In particular, it deals with problems and methods relating to systems having a memory (hereditary systems). The book contains eight chapters. Chapter 1 explains where functional differential equations come from and what sort of problems arise in applications. Chapter 2 gives a broad introduction to the basic principle involved and deals with systems having discrete and distributed delay. Chapters 3-5 are devoted to stability problems for retarded, neutral and stochastic functional differential equations. Problems of optimal control and estimation are considered in Chapters 6-8. For applied mathematicians, engineers, and physicists whose work involves mathematical modeling of hereditary systems. This volume can also be recommended as a supplementary text for graduate students who wish to become better acquainted with the properties and applications of functional differential equations.
Differential Equations
Author: Raymond M. Redheffer
Publisher: Jones & Bartlett Learning
ISBN: 9780867202007
Category : Mathematics
Languages : en
Pages : 744
Book Description
Publisher: Jones & Bartlett Learning
ISBN: 9780867202007
Category : Mathematics
Languages : en
Pages : 744
Book Description
Introduction to the Theory and Application of Differential Equations with Deviating Arguments
Author: L.E. El'sgol'ts
Publisher: Academic Press
ISBN: 0080956149
Category : Computers
Languages : en
Pages : 356
Book Description
Introduction to the Theory and Application of Differential Equations with Deviating Arguments 2nd edition is a revised and substantially expanded edition of the well-known book of L. E. El’sgol’ts published under this same title by Nauka in 1964. Extensions of the theory of differential equations with deviating argument as well as the stimuli of developments within various fields of science and technology contribute to the need for a new edition. This theory in recent years has attracted the attention of vast numbers of researchers, interested both in the theory and its applications. The development of the foundations of the theory of differential equations with a deviating argument is still far from complete. This situation, of course, leaves its mark on our suggestions to the reader of the book and prevents as orderly and systematic a presentation as is usual for mathematical literature. However, it is hoped that in spite of these deficiencies the book will prove useful as a first acquaintanceship with the theory of differential equations with a deviating argument.
Publisher: Academic Press
ISBN: 0080956149
Category : Computers
Languages : en
Pages : 356
Book Description
Introduction to the Theory and Application of Differential Equations with Deviating Arguments 2nd edition is a revised and substantially expanded edition of the well-known book of L. E. El’sgol’ts published under this same title by Nauka in 1964. Extensions of the theory of differential equations with deviating argument as well as the stimuli of developments within various fields of science and technology contribute to the need for a new edition. This theory in recent years has attracted the attention of vast numbers of researchers, interested both in the theory and its applications. The development of the foundations of the theory of differential equations with a deviating argument is still far from complete. This situation, of course, leaves its mark on our suggestions to the reader of the book and prevents as orderly and systematic a presentation as is usual for mathematical literature. However, it is hoped that in spite of these deficiencies the book will prove useful as a first acquaintanceship with the theory of differential equations with a deviating argument.
Partial Differential Equations
Author: Michael Shearer
Publisher: Princeton University Press
ISBN: 0691161291
Category : Mathematics
Languages : en
Pages : 286
Book Description
An accessible yet rigorous introduction to partial differential equations This textbook provides beginning graduate students and advanced undergraduates with an accessible introduction to the rich subject of partial differential equations (PDEs). It presents a rigorous and clear explanation of the more elementary theoretical aspects of PDEs, while also drawing connections to deeper analysis and applications. The book serves as a needed bridge between basic undergraduate texts and more advanced books that require a significant background in functional analysis. Topics include first order equations and the method of characteristics, second order linear equations, wave and heat equations, Laplace and Poisson equations, and separation of variables. The book also covers fundamental solutions, Green's functions and distributions, beginning functional analysis applied to elliptic PDEs, traveling wave solutions of selected parabolic PDEs, and scalar conservation laws and systems of hyperbolic PDEs. Provides an accessible yet rigorous introduction to partial differential equations Draws connections to advanced topics in analysis Covers applications to continuum mechanics An electronic solutions manual is available only to professors An online illustration package is available to professors
Publisher: Princeton University Press
ISBN: 0691161291
Category : Mathematics
Languages : en
Pages : 286
Book Description
An accessible yet rigorous introduction to partial differential equations This textbook provides beginning graduate students and advanced undergraduates with an accessible introduction to the rich subject of partial differential equations (PDEs). It presents a rigorous and clear explanation of the more elementary theoretical aspects of PDEs, while also drawing connections to deeper analysis and applications. The book serves as a needed bridge between basic undergraduate texts and more advanced books that require a significant background in functional analysis. Topics include first order equations and the method of characteristics, second order linear equations, wave and heat equations, Laplace and Poisson equations, and separation of variables. The book also covers fundamental solutions, Green's functions and distributions, beginning functional analysis applied to elliptic PDEs, traveling wave solutions of selected parabolic PDEs, and scalar conservation laws and systems of hyperbolic PDEs. Provides an accessible yet rigorous introduction to partial differential equations Draws connections to advanced topics in analysis Covers applications to continuum mechanics An electronic solutions manual is available only to professors An online illustration package is available to professors
Theory and Applications of Fractional Differential Equations
Author: A.A. Kilbas
Publisher: Elsevier
ISBN: 9780444518323
Category : Mathematics
Languages : en
Pages : 550
Book Description
This work aims to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy Type and Cauchy problems involving nonlinear ordinary fractional differential equations.
Publisher: Elsevier
ISBN: 9780444518323
Category : Mathematics
Languages : en
Pages : 550
Book Description
This work aims to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy Type and Cauchy problems involving nonlinear ordinary fractional differential equations.
Partial Differential Equations
Author: András Vasy
Publisher: American Mathematical Soc.
ISBN: 1470418819
Category : Mathematics
Languages : en
Pages : 295
Book Description
This text on partial differential equations is intended for readers who want to understand the theoretical underpinnings of modern PDEs in settings that are important for the applications without using extensive analytic tools required by most advanced texts. The assumed mathematical background is at the level of multivariable calculus and basic metric space material, but the latter is recalled as relevant as the text progresses. The key goal of this book is to be mathematically complete without overwhelming the reader, and to develop PDE theory in a manner that reflects how researchers would think about the material. A concrete example is that distribution theory and the concept of weak solutions are introduced early because while these ideas take some time for the students to get used to, they are fundamentally easy and, on the other hand, play a central role in the field. Then, Hilbert spaces that are quite important in the later development are introduced via completions which give essentially all the features one wants without the overhead of measure theory. There is additional material provided for readers who would like to learn more than the core material, and there are numerous exercises to help solidify one's understanding. The text should be suitable for advanced undergraduates or for beginning graduate students including those in engineering or the sciences.
Publisher: American Mathematical Soc.
ISBN: 1470418819
Category : Mathematics
Languages : en
Pages : 295
Book Description
This text on partial differential equations is intended for readers who want to understand the theoretical underpinnings of modern PDEs in settings that are important for the applications without using extensive analytic tools required by most advanced texts. The assumed mathematical background is at the level of multivariable calculus and basic metric space material, but the latter is recalled as relevant as the text progresses. The key goal of this book is to be mathematically complete without overwhelming the reader, and to develop PDE theory in a manner that reflects how researchers would think about the material. A concrete example is that distribution theory and the concept of weak solutions are introduced early because while these ideas take some time for the students to get used to, they are fundamentally easy and, on the other hand, play a central role in the field. Then, Hilbert spaces that are quite important in the later development are introduced via completions which give essentially all the features one wants without the overhead of measure theory. There is additional material provided for readers who would like to learn more than the core material, and there are numerous exercises to help solidify one's understanding. The text should be suitable for advanced undergraduates or for beginning graduate students including those in engineering or the sciences.