Solving Ordinary Differential Equations II

Solving Ordinary Differential Equations II PDF Author: Ernst Hairer
Publisher: Springer Science & Business Media
ISBN: 3662099470
Category : Mathematics
Languages : en
Pages : 615

Get Book Here

Book Description
"Whatever regrets may be, we have done our best." (Sir Ernest Shackleton, turning back on 9 January 1909 at 88°23' South.) Brahms struggled for 20 years to write his first symphony. Compared to this, the 10 years we have been working on these two volumes may even appear short. This second volume treats stiff differential equations and differential alge braic equations. It contains three chapters: Chapter IV on one-step (Runge Kutta) methods for stiff problems, Chapter Von multistep methods for stiff problems, and Chapter VI on singular perturbation and differential-algebraic equations. Each chapter is divided into sections. Usually the first sections of a chapter are of an introductory nature, explain numerical phenomena and exhibit numerical results. Investigations of a more theoretieal nature are presented in the later sections of each chapter. As in Volume I, the formulas, theorems, tables and figures are numbered consecutively in each section and indicate, in addition, the section num ber. In cross references to other chapters the (latin) chapter number is put first. References to the bibliography are again by "author" plus "year" in parentheses. The bibliography again contains only those papers which are discussed in the text and is in no way meant to be complete.

Solving Ordinary Differential Equations II

Solving Ordinary Differential Equations II PDF Author: Ernst Hairer
Publisher: Springer Science & Business Media
ISBN: 3662099470
Category : Mathematics
Languages : en
Pages : 615

Get Book Here

Book Description
"Whatever regrets may be, we have done our best." (Sir Ernest Shackleton, turning back on 9 January 1909 at 88°23' South.) Brahms struggled for 20 years to write his first symphony. Compared to this, the 10 years we have been working on these two volumes may even appear short. This second volume treats stiff differential equations and differential alge braic equations. It contains three chapters: Chapter IV on one-step (Runge Kutta) methods for stiff problems, Chapter Von multistep methods for stiff problems, and Chapter VI on singular perturbation and differential-algebraic equations. Each chapter is divided into sections. Usually the first sections of a chapter are of an introductory nature, explain numerical phenomena and exhibit numerical results. Investigations of a more theoretieal nature are presented in the later sections of each chapter. As in Volume I, the formulas, theorems, tables and figures are numbered consecutively in each section and indicate, in addition, the section num ber. In cross references to other chapters the (latin) chapter number is put first. References to the bibliography are again by "author" plus "year" in parentheses. The bibliography again contains only those papers which are discussed in the text and is in no way meant to be complete.

Partial Differential Equations I

Partial Differential Equations I PDF Author: Michael E. Taylor
Publisher: Springer Science & Business Media
ISBN: 144197055X
Category : Mathematics
Languages : en
Pages : 673

Get Book Here

Book Description
The first of three volumes on partial differential equations, this one introduces basic examples arising in continuum mechanics, electromagnetism, complex analysis and other areas, and develops a number of tools for their solution, in particular Fourier analysis, distribution theory, and Sobolev spaces. These tools are then applied to the treatment of basic problems in linear PDE, including the Laplace equation, heat equation, and wave equation, as well as more general elliptic, parabolic, and hyperbolic equations.The book is targeted at graduate students in mathematics and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis, and complex analysis.

Differential Equations II

Differential Equations II PDF Author: Open University. Linear Mathematics Course Team
Publisher:
ISBN: 9780335010981
Category : Differential equations
Languages : en
Pages : 0

Get Book Here

Book Description


Solving Ordinary Differential Equations I

Solving Ordinary Differential Equations I PDF Author: Ernst Hairer
Publisher: Springer Science & Business Media
ISBN: 354078862X
Category : Mathematics
Languages : en
Pages : 541

Get Book Here

Book Description
This book deals with methods for solving nonstiff ordinary differential equations. The first chapter describes the historical development of the classical theory, and the second chapter includes a modern treatment of Runge-Kutta and extrapolation methods. Chapter three begins with the classical theory of multistep methods, and concludes with the theory of general linear methods. The reader will benefit from many illustrations, a historical and didactic approach, and computer programs which help him/her learn to solve all kinds of ordinary differential equations. This new edition has been rewritten and new material has been included.

Modern Elementary Differential Equations

Modern Elementary Differential Equations PDF Author: Richard Bellman
Publisher: Courier Corporation
ISBN: 9780486686431
Category : Mathematics
Languages : en
Pages : 260

Get Book Here

Book Description
Designed to introduce students to the theory and applications of differential equations and to help them formulate scientific problems in terms of such equations, this undergraduate-level text emphasizes applications to problems in biology, economics, engineering, and physics. This edition also includes material on discontinuous solutions, Riccati and Euler equations, and linear difference equations.

Differential Equations

Differential Equations PDF Author: H. S. Bear
Publisher: Courier Corporation
ISBN: 0486143643
Category : Mathematics
Languages : en
Pages : 226

Get Book Here

Book Description
First-rate introduction for undergraduates examines first order equations, complex-valued solutions, linear differential operators, the Laplace transform, Picard's existence theorem, and much more. Includes problems and solutions.

Surveys in Differential-Algebraic Equations III

Surveys in Differential-Algebraic Equations III PDF Author: Achim Ilchmann
Publisher: Springer
ISBN: 331922428X
Category : Mathematics
Languages : en
Pages : 320

Get Book Here

Book Description
The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs), which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - Flexibility of DAE formulations - Reachability analysis and deterministic global optimization - Numerical linear algebra methods - Boundary value problems The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.

Ordinary Differential Equations with Applications

Ordinary Differential Equations with Applications PDF Author: Sze-Bi Hsu
Publisher: World Scientific
ISBN: 9812563199
Category : Mathematics
Languages : en
Pages : 258

Get Book Here

Book Description
During the past three decades, the development of nonlinear analysis, dynamical systems and their applications to science and engineering has stimulated renewed enthusiasm for the theory of Ordinary Differential Equations (ODE).This useful book, which is based around the lecture notes of a well-received graduate course, emphasizes both theory and applications, taking numerous examples from physics and biology to illustrate the application of ODE theory and techniques.Written in a straightforward and easily accessible style, this volume presents dynamical systems in the spirit of nonlinear analysis to readers at a graduate level and serves both as a textbook or as a valuable resource for researchers.

Introduction to Differential Equations: Second Edition

Introduction to Differential Equations: Second Edition PDF Author: Michael E. Taylor
Publisher: American Mathematical Soc.
ISBN: 1470467623
Category : Education
Languages : en
Pages : 388

Get Book Here

Book Description
This text introduces students to the theory and practice of differential equations, which are fundamental to the mathematical formulation of problems in physics, chemistry, biology, economics, and other sciences. The book is ideally suited for undergraduate or beginning graduate students in mathematics, and will also be useful for students in the physical sciences and engineering who have already taken a three-course calculus sequence. This second edition incorporates much new material, including sections on the Laplace transform and the matrix Laplace transform, a section devoted to Bessel's equation, and sections on applications of variational methods to geodesics and to rigid body motion. There is also a more complete treatment of the Runge-Kutta scheme, as well as numerous additions and improvements to the original text. Students finishing this book will be well prepare

A Second Course in Elementary Differential Equations

A Second Course in Elementary Differential Equations PDF Author: Paul Waltman
Publisher: Elsevier
ISBN: 1483276600
Category : Mathematics
Languages : en
Pages : 272

Get Book Here

Book Description
A Second Course in Elementary Differential Equations deals with norms, metric spaces, completeness, inner products, and an asymptotic behavior in a natural setting for solving problems in differential equations. The book reviews linear algebra, constant coefficient case, repeated eigenvalues, and the employment of the Putzer algorithm for nondiagonalizable coefficient matrix. The text describes, in geometrical and in an intuitive approach, Liapunov stability, qualitative behavior, the phase plane concepts, polar coordinate techniques, limit cycles, the Poincaré-Bendixson theorem. The book explores, in an analytical procedure, the existence and uniqueness theorems, metric spaces, operators, contraction mapping theorem, and initial value problems. The contraction mapping theorem concerns operators that map a given metric space into itself, in which, where an element of the metric space M, an operator merely associates with it a unique element of M. The text also tackles inner products, orthogonality, bifurcation, as well as linear boundary value problems, (particularly the Sturm-Liouville problem). The book is intended for mathematics or physics students engaged in ordinary differential equations, and for biologists, engineers, economists, or chemists who need to master the prerequisites for a graduate course in mathematics.