Low Dimensional Topology

Low Dimensional Topology PDF Author: Tomasz Mrowka
Publisher: American Mathematical Soc.
ISBN: 0821886967
Category : Mathematics
Languages : en
Pages : 331

Get Book Here

Book Description
Low-dimensional topology has long been a fertile area for the interaction of many different disciplines of mathematics, including differential geometry, hyperbolic geometry, combinatorics, representation theory, global analysis, classical mechanics, and theoretical physics. The Park City Mathematics Institute summer school in 2006 explored in depth the most exciting recent aspects of this interaction, aimed at a broad audience of both graduate students and researchers. The present volume is based on lectures presented at the summer school on low-dimensional topology. These notes give fresh, concise, and high-level introductions to these developments, often with new arguments not found elsewhere. The volume will be of use both to graduate students seeking to enter the field of low-dimensional topology and to senior researchers wishing to keep up with current developments. The volume begins with notes based on a special lecture by John Milnor about the history of the topology of manifolds. It also contains notes from lectures by Cameron Gordon on the basics of three-manifold topology and surgery problems, Mikhail Khovanov on his homological invariants for knots, John Etnyre on contact geometry, Ron Fintushel and Ron Stern on constructions of exotic four-manifolds, David Gabai on the hyperbolic geometry and the ending lamination theorem, Zoltan Szabo on Heegaard Floer homology for knots and three manifolds, and John Morgan on Hamilton's and Perelman's work on Ricci flow and geometrization.

Floer Homology, Gauge Theory, and Low-Dimensional Topology

Floer Homology, Gauge Theory, and Low-Dimensional Topology PDF Author: Clay Mathematics Institute. Summer School
Publisher: American Mathematical Soc.
ISBN: 9780821838457
Category : Mathematics
Languages : en
Pages : 318

Get Book Here

Book Description
Mathematical gauge theory studies connections on principal bundles, or, more precisely, the solution spaces of certain partial differential equations for such connections. Historically, these equations have come from mathematical physics, and play an important role in the description of the electro-weak and strong nuclear forces. The use of gauge theory as a tool for studying topological properties of four-manifolds was pioneered by the fundamental work of Simon Donaldson in theearly 1980s, and was revolutionized by the introduction of the Seiberg-Witten equations in the mid-1990s. Since the birth of the subject, it has retained its close connection with symplectic topology. The analogy between these two fields of study was further underscored by Andreas Floer's constructionof an infinite-dimensional variant of Morse theory that applies in two a priori different contexts: either to define symplectic invariants for pairs of Lagrangian submanifolds of a symplectic manifold, or to define topological This volume is based on lecture courses and advanced seminars given at the 2004 Clay Mathematics Institute Summer School at the Alfred Renyi Institute of Mathematics in Budapest, Hungary. Several of the authors have added a considerable amount of additional material tothat presented at the school, and the resulting volume provides a state-of-the-art introduction to current research, covering material from Heegaard Floer homology, contact geometry, smooth four-manifold topology, and symplectic four-manifolds. Information for our distributors: Titles in this seriesare copublished with the Clay Mathematics Institute (Cambridge, MA).

Low Dimensional Topology

Low Dimensional Topology PDF Author: Tomasz Mrowka
Publisher: American Mathematical Soc.
ISBN: 0821886967
Category : Mathematics
Languages : en
Pages : 331

Get Book Here

Book Description
Low-dimensional topology has long been a fertile area for the interaction of many different disciplines of mathematics, including differential geometry, hyperbolic geometry, combinatorics, representation theory, global analysis, classical mechanics, and theoretical physics. The Park City Mathematics Institute summer school in 2006 explored in depth the most exciting recent aspects of this interaction, aimed at a broad audience of both graduate students and researchers. The present volume is based on lectures presented at the summer school on low-dimensional topology. These notes give fresh, concise, and high-level introductions to these developments, often with new arguments not found elsewhere. The volume will be of use both to graduate students seeking to enter the field of low-dimensional topology and to senior researchers wishing to keep up with current developments. The volume begins with notes based on a special lecture by John Milnor about the history of the topology of manifolds. It also contains notes from lectures by Cameron Gordon on the basics of three-manifold topology and surgery problems, Mikhail Khovanov on his homological invariants for knots, John Etnyre on contact geometry, Ron Fintushel and Ron Stern on constructions of exotic four-manifolds, David Gabai on the hyperbolic geometry and the ending lamination theorem, Zoltan Szabo on Heegaard Floer homology for knots and three manifolds, and John Morgan on Hamilton's and Perelman's work on Ricci flow and geometrization.

Three-dimensional Geometry and Topology

Three-dimensional Geometry and Topology PDF Author: William P. Thurston
Publisher: Princeton University Press
ISBN: 9780691083049
Category : Mathematics
Languages : en
Pages : 340

Get Book Here

Book Description
Every mathematician should be acquainted with the basic facts about the geometry of surfaces, of two-dimensional manifolds. The theory of three-dimensional manifolds is much more difficult and still only partly understood, although there is ample evidence that the theory of three-dimensional manifolds is one of the most beautiful in the whole of mathematics. This excellent introductory work makes this mathematical wonderland remained rather inaccessible to non-specialists. The author is both a leading researcher, with a formidable geometric intuition, and a gifted expositor. His vivid descriptions of what it might be like to live in this or that three-dimensional manifold bring the subject to life. Like Poincaré, he appeals to intuition, but his enthusiasm is infectious and should make many converts for this kind of mathematics. There are good pictures, plenty of exercises and problems, and the reader will find a selection of topics which are not found in the standard repertoire. This book contains a great deal of interesting mathematics.

Low-Dimensional Geometry

Low-Dimensional Geometry PDF Author: Francis Bonahon
Publisher: American Mathematical Soc.
ISBN: 082184816X
Category : Mathematics
Languages : en
Pages : 403

Get Book Here

Book Description
The study of 3-dimensional spaces brings together elements from several areas of mathematics. The most notable are topology and geometry, but elements of number theory and analysis also make appearances. In the past 30 years, there have been striking developments in the mathematics of 3-dimensional manifolds. This book aims to introduce undergraduate students to some of these important developments. Low-Dimensional Geometry starts at a relatively elementary level, and its early chapters can be used as a brief introduction to hyperbolic geometry. However, the ultimate goal is to describe the very recently completed geometrization program for 3-dimensional manifolds. The journey to reach this goal emphasizes examples and concrete constructions as an introduction to more general statements. This includes the tessellations associated to the process of gluing together the sides of a polygon. Bending some of these tessellations provides a natural introduction to 3-dimensional hyperbolic geometry and to the theory of kleinian groups, and it eventually leads to a discussion of the geometrization theorems for knot complements and 3-dimensional manifolds. This book is illustrated with many pictures, as the author intended to share his own enthusiasm for the beauty of some of the mathematical objects involved. However, it also emphasizes mathematical rigor and, with the exception of the most recent research breakthroughs, its constructions and statements are carefully justified.

New Ideas In Low Dimensional Topology

New Ideas In Low Dimensional Topology PDF Author: Vassily Olegovich Manturov
Publisher: World Scientific
ISBN: 9814630632
Category : Mathematics
Languages : en
Pages : 541

Get Book Here

Book Description
This book consists of a selection of articles devoted to new ideas and developments in low dimensional topology. Low dimensions refer to dimensions three and four for the topology of manifolds and their submanifolds. Thus we have papers related to both manifolds and to knotted submanifolds of dimension one in three (classical knot theory) and two in four (surfaces in four dimensional spaces). Some of the work involves virtual knot theory where the knots are abstractions of classical knots but can be represented by knots embedded in surfaces. This leads both to new interactions with classical topology and to new interactions with essential combinatorics.

Differential and Low-Dimensional Topology

Differential and Low-Dimensional Topology PDF Author: András Juhász
Publisher: Cambridge University Press
ISBN: 1009220586
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
The new student in differential and low-dimensional topology is faced with a bewildering array of tools and loosely connected theories. This short book presents the essential parts of each, enabling the reader to become 'literate' in the field and begin research as quickly as possible. The only prerequisite assumed is an undergraduate algebraic topology course. The first half of the text reviews basic notions of differential topology and culminates with the classification of exotic seven-spheres. It then dives into dimension three and knot theory. There then follows an introduction to Heegaard Floer homology, a powerful collection of modern invariants of three- and four-manifolds, and of knots, that has not before appeared in an introductory textbook. The book concludes with a glimpse of four-manifold theory. Students will find it an exhilarating and authoritative guide to a broad swathe of the most important topics in modern topology.

Instantons and Four-Manifolds

Instantons and Four-Manifolds PDF Author: Daniel S. Freed
Publisher: Springer Science & Business Media
ISBN: 1461397030
Category : Mathematics
Languages : en
Pages : 212

Get Book Here

Book Description
From the reviews of the first edition: "This book exposes the beautiful confluence of deep techniques and ideas from mathematical physics and the topological study of the differentiable structure of compact four-dimensional manifolds, compact spaces locally modeled on the world in which we live and operate... The book is filled with insightful remarks, proofs, and contributions that have never before appeared in print. For anyone attempting to understand the work of Donaldson and the applications of gauge theories to four-dimensional topology, the book is a must." #Science#1 "I would strongly advise the graduate student or working mathematician who wishes to learn the analytic aspects of this subject to begin with Freed and Uhlenbeck's book." #Bulletin of the American Mathematical Society#2

Monopoles and Three-Manifolds

Monopoles and Three-Manifolds PDF Author: Peter Kronheimer
Publisher:
ISBN: 9780521880220
Category : Mathematics
Languages : en
Pages : 796

Get Book Here

Book Description
This 2007 book provides a comprehensive treatment of Floer homology, based on the Seiberg-Witten equations. Suitable for beginning graduate students and researchers in the field, this book provides a full discussion of a central part of the study of the topology of manifolds.

Knots, Links, Braids and 3-Manifolds

Knots, Links, Braids and 3-Manifolds PDF Author: Viktor Vasilʹevich Prasolov
Publisher: American Mathematical Soc.
ISBN: 0821808982
Category : Mathematics
Languages : en
Pages : 250

Get Book Here

Book Description
This book is an introduction to the remarkable work of Vaughan Jones and Victor Vassiliev on knot and link invariants and its recent modifications and generalizations, including a mathematical treatment of Jones-Witten invariants. The mathematical prerequisites are minimal compared to other monographs in this area. Numerous figures and problems make this book suitable as a graduate level course text or for self-study.

Differential Forms in Algebraic Topology

Differential Forms in Algebraic Topology PDF Author: Raoul Bott
Publisher: Springer Science & Business Media
ISBN: 1475739516
Category : Mathematics
Languages : en
Pages : 319

Get Book Here

Book Description
Developed from a first-year graduate course in algebraic topology, this text is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas: de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, this book is equally suitable for self-study and as a one-semester course in topology.