Author: Alexander Levin
Publisher: Springer Science & Business Media
ISBN: 1402069472
Category : Mathematics
Languages : en
Pages : 528
Book Description
Difference algebra grew out of the study of algebraic difference equations with coefficients from functional fields. The first stage of this development of the theory is associated with its founder, J.F. Ritt (1893-1951), and R. Cohn, whose book Difference Algebra (1965) remained the only fundamental monograph on the subject for many years. Nowadays, difference algebra has overgrown the frame of the theory of ordinary algebraic difference equations and appears as a rich theory with applications to the study of equations in finite differences, functional equations, differential equations with delay, algebraic structures with operators, group and semigroup rings. The monograph is intended for graduate students and researchers in difference and differential algebra, commutative algebra, ring theory, and algebraic geometry. The book is self-contained; it requires no prerequisites other than the knowledge of basic algebraic concepts and a mathematical maturity of an advanced undergraduate.
Difference Algebra
Author: Alexander Levin
Publisher: Springer Science & Business Media
ISBN: 1402069472
Category : Mathematics
Languages : en
Pages : 528
Book Description
Difference algebra grew out of the study of algebraic difference equations with coefficients from functional fields. The first stage of this development of the theory is associated with its founder, J.F. Ritt (1893-1951), and R. Cohn, whose book Difference Algebra (1965) remained the only fundamental monograph on the subject for many years. Nowadays, difference algebra has overgrown the frame of the theory of ordinary algebraic difference equations and appears as a rich theory with applications to the study of equations in finite differences, functional equations, differential equations with delay, algebraic structures with operators, group and semigroup rings. The monograph is intended for graduate students and researchers in difference and differential algebra, commutative algebra, ring theory, and algebraic geometry. The book is self-contained; it requires no prerequisites other than the knowledge of basic algebraic concepts and a mathematical maturity of an advanced undergraduate.
Publisher: Springer Science & Business Media
ISBN: 1402069472
Category : Mathematics
Languages : en
Pages : 528
Book Description
Difference algebra grew out of the study of algebraic difference equations with coefficients from functional fields. The first stage of this development of the theory is associated with its founder, J.F. Ritt (1893-1951), and R. Cohn, whose book Difference Algebra (1965) remained the only fundamental monograph on the subject for many years. Nowadays, difference algebra has overgrown the frame of the theory of ordinary algebraic difference equations and appears as a rich theory with applications to the study of equations in finite differences, functional equations, differential equations with delay, algebraic structures with operators, group and semigroup rings. The monograph is intended for graduate students and researchers in difference and differential algebra, commutative algebra, ring theory, and algebraic geometry. The book is self-contained; it requires no prerequisites other than the knowledge of basic algebraic concepts and a mathematical maturity of an advanced undergraduate.
Handbook of Algebra
Author: M. Hazewinkel
Publisher: Elsevier
ISBN: 0080462499
Category : Mathematics
Languages : en
Pages : 543
Book Description
Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest. In addition to the primary information given in the Handbook, there are references to relevant articles, books or lecture notes to help the reader. An excellent index has been included which is extensive and not limited to definitions, theorems etc. The Handbook of Algebra will publish articles as they are received and thus the reader will find in this third volume articles from twelve different sections. The advantages of this scheme are two-fold: accepted articles will be published quickly and the outline of the Handbook can be allowed to evolve as the various volumes are published. A particularly important function of the Handbook is to provide professional mathematicians working in an area other than their own with sufficient information on the topic in question if and when it is needed.- Thorough and practical source for information- Provides in-depth coverage of new topics in algebra- Includes references to relevant articles, books and lecture notes
Publisher: Elsevier
ISBN: 0080462499
Category : Mathematics
Languages : en
Pages : 543
Book Description
Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest. In addition to the primary information given in the Handbook, there are references to relevant articles, books or lecture notes to help the reader. An excellent index has been included which is extensive and not limited to definitions, theorems etc. The Handbook of Algebra will publish articles as they are received and thus the reader will find in this third volume articles from twelve different sections. The advantages of this scheme are two-fold: accepted articles will be published quickly and the outline of the Handbook can be allowed to evolve as the various volumes are published. A particularly important function of the Handbook is to provide professional mathematicians working in an area other than their own with sufficient information on the topic in question if and when it is needed.- Thorough and practical source for information- Provides in-depth coverage of new topics in algebra- Includes references to relevant articles, books and lecture notes
Algebra: Chapter 0
Author: Paolo Aluffi
Publisher: American Mathematical Soc.
ISBN: 147046571X
Category : Education
Languages : en
Pages : 713
Book Description
Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.
Publisher: American Mathematical Soc.
ISBN: 147046571X
Category : Education
Languages : en
Pages : 713
Book Description
Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.
Algebra
Author: I. B. S. Passi
Publisher: Springer
ISBN: 9380250940
Category : Mathematics
Languages : en
Pages : 246
Book Description
Contributed articles.
Publisher: Springer
ISBN: 9380250940
Category : Mathematics
Languages : en
Pages : 246
Book Description
Contributed articles.
Geometric Algebra
Author: Emil Artin
Publisher: Courier Dover Publications
ISBN: 048680920X
Category : Mathematics
Languages : en
Pages : 228
Book Description
This concise classic presents advanced undergraduates and graduate students in mathematics with an overview of geometric algebra. The text originated with lecture notes from a New York University course taught by Emil Artin, one of the preeminent mathematicians of the twentieth century. The Bulletin of the American Mathematical Society praised Geometric Algebra upon its initial publication, noting that "mathematicians will find on many pages ample evidence of the author's ability to penetrate a subject and to present material in a particularly elegant manner." Chapter 1 serves as reference, consisting of the proofs of certain isolated algebraic theorems. Subsequent chapters explore affine and projective geometry, symplectic and orthogonal geometry, the general linear group, and the structure of symplectic and orthogonal groups. The author offers suggestions for the use of this book, which concludes with a bibliography and index.
Publisher: Courier Dover Publications
ISBN: 048680920X
Category : Mathematics
Languages : en
Pages : 228
Book Description
This concise classic presents advanced undergraduates and graduate students in mathematics with an overview of geometric algebra. The text originated with lecture notes from a New York University course taught by Emil Artin, one of the preeminent mathematicians of the twentieth century. The Bulletin of the American Mathematical Society praised Geometric Algebra upon its initial publication, noting that "mathematicians will find on many pages ample evidence of the author's ability to penetrate a subject and to present material in a particularly elegant manner." Chapter 1 serves as reference, consisting of the proofs of certain isolated algebraic theorems. Subsequent chapters explore affine and projective geometry, symplectic and orthogonal geometry, the general linear group, and the structure of symplectic and orthogonal groups. The author offers suggestions for the use of this book, which concludes with a bibliography and index.
Same But Different Math
Author: Sue Looney
Publisher: Taylor & Francis
ISBN: 1000595404
Category : Education
Languages : en
Pages : 93
Book Description
Same But Different Math is a powerful routine to help students improve their mathematical reasoning, clarify concepts and make critical connections between ideas. Popular math consultant Sue Looney takes you step by step through implementation so you can easily add this routine into your toolbox. She establishes the rationale for the routine and then walks you through specific examples of when to use it, how to use it and how to make specific connections for learners. Throughout the book, you’ll find examples of lessons with images from a range of grade levels and mathematical content to show you the routine in action. There are also exercises for you to complete while reading to help you apply what you’ve learned, as well as a handy planning section with a template and resource links. In addition, there are Appendices featuring additional examples, which you can download from our website www.routledge.com/9781032126555 for classroom use. With the helpful features in this book, you’ll come away confidently able to implement this routine, bringing all your students to deeper levels of understanding in math.
Publisher: Taylor & Francis
ISBN: 1000595404
Category : Education
Languages : en
Pages : 93
Book Description
Same But Different Math is a powerful routine to help students improve their mathematical reasoning, clarify concepts and make critical connections between ideas. Popular math consultant Sue Looney takes you step by step through implementation so you can easily add this routine into your toolbox. She establishes the rationale for the routine and then walks you through specific examples of when to use it, how to use it and how to make specific connections for learners. Throughout the book, you’ll find examples of lessons with images from a range of grade levels and mathematical content to show you the routine in action. There are also exercises for you to complete while reading to help you apply what you’ve learned, as well as a handy planning section with a template and resource links. In addition, there are Appendices featuring additional examples, which you can download from our website www.routledge.com/9781032126555 for classroom use. With the helpful features in this book, you’ll come away confidently able to implement this routine, bringing all your students to deeper levels of understanding in math.
Academic Algebra, for the Use of Common and High Schools and Academies ...
Author: Edward Albert Bowser
Publisher:
ISBN:
Category : Algebra
Languages : en
Pages : 376
Book Description
Publisher:
ISBN:
Category : Algebra
Languages : en
Pages : 376
Book Description
Concepts of Modern Mathematics
Author: Ian Stewart
Publisher: Courier Corporation
ISBN: 0486134954
Category : Mathematics
Languages : en
Pages : 367
Book Description
In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts of groups, sets, subsets, topology, Boolean algebra, and other mathematical subjects. 200 illustrations.
Publisher: Courier Corporation
ISBN: 0486134954
Category : Mathematics
Languages : en
Pages : 367
Book Description
In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts of groups, sets, subsets, topology, Boolean algebra, and other mathematical subjects. 200 illustrations.
Linear Algebra Done Right
Author: Sheldon Axler
Publisher: Springer Science & Business Media
ISBN: 9780387982595
Category : Mathematics
Languages : en
Pages : 276
Book Description
This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.
Publisher: Springer Science & Business Media
ISBN: 9780387982595
Category : Mathematics
Languages : en
Pages : 276
Book Description
This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.
Algebra 2
Author:
Publisher: McDougal Littel
ISBN: 9780618195695
Category : Juvenile Nonfiction
Languages : es
Pages : 202
Book Description
Publisher: McDougal Littel
ISBN: 9780618195695
Category : Juvenile Nonfiction
Languages : es
Pages : 202
Book Description