Author: Yu. A. Mitropolsky
Publisher: CRC Press
ISBN: 9780415272216
Category : Mathematics
Languages : en
Pages : 394
Book Description
Linear nonautonomous equations arise as mathematical models in mechanics, chemistry, and biology. The investigation of bounded solutions to systems of differential equations involves some important and challenging problems of perturbation theory for invariant toroidal manifolds. This monograph is a detailed study of the application of Lyapunov functions with variable sign, expressed in quadratic forms, to the solution of this problem. The authors explore the preservation of invariant tori of dynamic systems under perturbation. This volume is a classic contribution to the literature on stability theory and provides a useful source of reference for postgraduates and researchers.
Dichotomies and Stability in Nonautonomous Linear Systems
Author: Yu. A. Mitropolsky
Publisher: CRC Press
ISBN: 9780415272216
Category : Mathematics
Languages : en
Pages : 394
Book Description
Linear nonautonomous equations arise as mathematical models in mechanics, chemistry, and biology. The investigation of bounded solutions to systems of differential equations involves some important and challenging problems of perturbation theory for invariant toroidal manifolds. This monograph is a detailed study of the application of Lyapunov functions with variable sign, expressed in quadratic forms, to the solution of this problem. The authors explore the preservation of invariant tori of dynamic systems under perturbation. This volume is a classic contribution to the literature on stability theory and provides a useful source of reference for postgraduates and researchers.
Publisher: CRC Press
ISBN: 9780415272216
Category : Mathematics
Languages : en
Pages : 394
Book Description
Linear nonautonomous equations arise as mathematical models in mechanics, chemistry, and biology. The investigation of bounded solutions to systems of differential equations involves some important and challenging problems of perturbation theory for invariant toroidal manifolds. This monograph is a detailed study of the application of Lyapunov functions with variable sign, expressed in quadratic forms, to the solution of this problem. The authors explore the preservation of invariant tori of dynamic systems under perturbation. This volume is a classic contribution to the literature on stability theory and provides a useful source of reference for postgraduates and researchers.
Stability of Nonautonomous Differential Equations
Author: Luis Barreira
Publisher: Springer
ISBN: 3540747753
Category : Mathematics
Languages : en
Pages : 288
Book Description
This volume covers the stability of nonautonomous differential equations in Banach spaces in the presence of nonuniform hyperbolicity. Topics under discussion include the Lyapunov stability of solutions, the existence and smoothness of invariant manifolds, and the construction and regularity of topological conjugacies. The exposition is directed to researchers as well as graduate students interested in differential equations and dynamical systems, particularly in stability theory.
Publisher: Springer
ISBN: 3540747753
Category : Mathematics
Languages : en
Pages : 288
Book Description
This volume covers the stability of nonautonomous differential equations in Banach spaces in the presence of nonuniform hyperbolicity. Topics under discussion include the Lyapunov stability of solutions, the existence and smoothness of invariant manifolds, and the construction and regularity of topological conjugacies. The exposition is directed to researchers as well as graduate students interested in differential equations and dynamical systems, particularly in stability theory.
Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Author: Everaldo M. Bonotto
Publisher: John Wiley & Sons
ISBN: 1119654939
Category : Mathematics
Languages : en
Pages : 514
Book Description
GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS IN ABSTRACT SPACES AND APPLICATIONS Explore a unified view of differential equations through the use of the generalized ODE from leading academics in mathematics Generalized Ordinary Differential Equations in Abstract Spaces and Applications delivers a comprehensive treatment of new results of the theory of Generalized ODEs in abstract spaces. The book covers applications to other types of differential equations, including Measure Functional Differential Equations (measure FDEs). It presents a uniform collection of qualitative results of Generalized ODEs and offers readers an introduction to several theories, including ordinary differential equations, impulsive differential equations, functional differential equations, dynamical equations on time scales, and more. Throughout the book, the focus is on qualitative theory and on corresponding results for other types of differential equations, as well as the connection between Generalized Ordinary Differential Equations and impulsive differential equations, functional differential equations, measure differential equations and dynamic equations on time scales. The book’s descriptions will be of use in many mathematical contexts, as well as in the social and natural sciences. Readers will also benefit from the inclusion of: A thorough introduction to regulated functions, including their basic properties, equiregulated sets, uniform convergence, and relatively compact sets An exploration of the Kurzweil integral, including its definitions and basic properties A discussion of measure functional differential equations, including impulsive measure FDEs The interrelationship between generalized ODEs and measure FDEs A treatment of the basic properties of generalized ODEs, including the existence and uniqueness of solutions, and prolongation and maximal solutions Perfect for researchers and graduate students in Differential Equations and Dynamical Systems, Generalized Ordinary Differential Equations in Abstract Spaces and Applications will also earn a place in the libraries of advanced undergraduate students taking courses in the subject and hoping to move onto graduate studies.
Publisher: John Wiley & Sons
ISBN: 1119654939
Category : Mathematics
Languages : en
Pages : 514
Book Description
GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS IN ABSTRACT SPACES AND APPLICATIONS Explore a unified view of differential equations through the use of the generalized ODE from leading academics in mathematics Generalized Ordinary Differential Equations in Abstract Spaces and Applications delivers a comprehensive treatment of new results of the theory of Generalized ODEs in abstract spaces. The book covers applications to other types of differential equations, including Measure Functional Differential Equations (measure FDEs). It presents a uniform collection of qualitative results of Generalized ODEs and offers readers an introduction to several theories, including ordinary differential equations, impulsive differential equations, functional differential equations, dynamical equations on time scales, and more. Throughout the book, the focus is on qualitative theory and on corresponding results for other types of differential equations, as well as the connection between Generalized Ordinary Differential Equations and impulsive differential equations, functional differential equations, measure differential equations and dynamic equations on time scales. The book’s descriptions will be of use in many mathematical contexts, as well as in the social and natural sciences. Readers will also benefit from the inclusion of: A thorough introduction to regulated functions, including their basic properties, equiregulated sets, uniform convergence, and relatively compact sets An exploration of the Kurzweil integral, including its definitions and basic properties A discussion of measure functional differential equations, including impulsive measure FDEs The interrelationship between generalized ODEs and measure FDEs A treatment of the basic properties of generalized ODEs, including the existence and uniqueness of solutions, and prolongation and maximal solutions Perfect for researchers and graduate students in Differential Equations and Dynamical Systems, Generalized Ordinary Differential Equations in Abstract Spaces and Applications will also earn a place in the libraries of advanced undergraduate students taking courses in the subject and hoping to move onto graduate studies.
Nonautonomous Bifurcation Theory
Author: Vasso Anagnostopoulou
Publisher: Springer Nature
ISBN: 303129842X
Category : Mathematics
Languages : en
Pages : 159
Book Description
Bifurcation theory is a major topic in dynamical systems theory with profound applications. However, in contrast to autonomous dynamical systems, it is not clear what a bifurcation of a nonautonomous dynamical system actually is, and so far, various different approaches to describe qualitative changes have been suggested in the literature. The aim of this book is to provide a concise survey of the area and equip the reader with suitable tools to tackle nonautonomous problems. A review, discussion and comparison of several concepts of bifurcation is provided, and these are formulated in a unified notation and illustrated by means of comprehensible examples. Additionally, certain relevant tools needed in a corresponding analysis are presented.
Publisher: Springer Nature
ISBN: 303129842X
Category : Mathematics
Languages : en
Pages : 159
Book Description
Bifurcation theory is a major topic in dynamical systems theory with profound applications. However, in contrast to autonomous dynamical systems, it is not clear what a bifurcation of a nonautonomous dynamical system actually is, and so far, various different approaches to describe qualitative changes have been suggested in the literature. The aim of this book is to provide a concise survey of the area and equip the reader with suitable tools to tackle nonautonomous problems. A review, discussion and comparison of several concepts of bifurcation is provided, and these are formulated in a unified notation and illustrated by means of comprehensible examples. Additionally, certain relevant tools needed in a corresponding analysis are presented.
Linear Systems Exponential Dichotomy and Structure of Sets of Hyperbolic Points
Author: Zhensheng Lin
Publisher: World Scientific
ISBN: 9789810242831
Category : Mathematics
Languages : en
Pages : 222
Book Description
Historically, the theory of stability is based on linear differential systems, which are simple and important systems in ordinary differential equations. The research on differential equations and on the theory of stability will, to a certain extent, be influenced by the research on linear differential systems. For differential linear equation systems, there are still many historical open questions attracting mathematicians. This book deals with the theory of linear differential systems developed around the notion of exponential dichotomies. The authors advance the theory of stability through their research in this field. Several new important results on linear differential systems are presented. They concern exponential dichotomy and the structure of the sets of hyperbolic points. The book has five chapters: Chapter 1 introduces some necessary classical results on the linear differential systems, and the following chapters discuss exponential dichotomy, spectra of almost periodic linear systems, the Floquet theory for quasi periodic linear systems and the structure of sets of hyperbolic points. This book is a very useful reference in the area of the stability theory of ordinary differential equations and the theory of dynamic systems.
Publisher: World Scientific
ISBN: 9789810242831
Category : Mathematics
Languages : en
Pages : 222
Book Description
Historically, the theory of stability is based on linear differential systems, which are simple and important systems in ordinary differential equations. The research on differential equations and on the theory of stability will, to a certain extent, be influenced by the research on linear differential systems. For differential linear equation systems, there are still many historical open questions attracting mathematicians. This book deals with the theory of linear differential systems developed around the notion of exponential dichotomies. The authors advance the theory of stability through their research in this field. Several new important results on linear differential systems are presented. They concern exponential dichotomy and the structure of the sets of hyperbolic points. The book has five chapters: Chapter 1 introduces some necessary classical results on the linear differential systems, and the following chapters discuss exponential dichotomy, spectra of almost periodic linear systems, the Floquet theory for quasi periodic linear systems and the structure of sets of hyperbolic points. This book is a very useful reference in the area of the stability theory of ordinary differential equations and the theory of dynamic systems.
Attractivity and Bifurcation for Nonautonomous Dynamical Systems
Author: Martin Rasmussen
Publisher: Springer Science & Business Media
ISBN: 3540712240
Category : Mathematics
Languages : en
Pages : 222
Book Description
Although, bifurcation theory of equations with autonomous and periodic time dependence is a major object of research in the study of dynamical systems since decades, the notion of a nonautonomous bifurcation is not yet established. In this book, two different approaches are developed which are based on special definitions of local attractivity and repulsivity. It is shown that these notions lead to nonautonomous Morse decompositions.
Publisher: Springer Science & Business Media
ISBN: 3540712240
Category : Mathematics
Languages : en
Pages : 222
Book Description
Although, bifurcation theory of equations with autonomous and periodic time dependence is a major object of research in the study of dynamical systems since decades, the notion of a nonautonomous bifurcation is not yet established. In this book, two different approaches are developed which are based on special definitions of local attractivity and repulsivity. It is shown that these notions lead to nonautonomous Morse decompositions.
Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control
Author: Russell Johnson
Publisher: Springer
ISBN: 3319290258
Category : Mathematics
Languages : en
Pages : 515
Book Description
This monograph contains an in-depth analysis of the dynamics given by a linear Hamiltonian system of general dimension with nonautonomous bounded and uniformly continuous coefficients, without other initial assumptions on time-recurrence. Particular attention is given to the oscillation properties of the solutions as well as to a spectral theory appropriate for such systems. The book contains extensions of results which are well known when the coefficients are autonomous or periodic, as well as in the nonautonomous two-dimensional case. However, a substantial part of the theory presented here is new even in those much simpler situations. The authors make systematic use of basic facts concerning Lagrange planes and symplectic matrices, and apply some fundamental methods of topological dynamics and ergodic theory. Among the tools used in the analysis, which include Lyapunov exponents, Weyl matrices, exponential dichotomy, and weak disconjugacy, a fundamental role is played by the rotation number for linear Hamiltonian systems of general dimension. The properties of all these objects form the basis for the study of several themes concerning linear-quadratic control problems, including the linear regulator property, the Kalman-Bucy filter, the infinite-horizon optimization problem, the nonautonomous version of the Yakubovich Frequency Theorem, and dissipativity in the Willems sense. The book will be useful for graduate students and researchers interested in nonautonomous differential equations; dynamical systems and ergodic theory; spectral theory of differential operators; and control theory.
Publisher: Springer
ISBN: 3319290258
Category : Mathematics
Languages : en
Pages : 515
Book Description
This monograph contains an in-depth analysis of the dynamics given by a linear Hamiltonian system of general dimension with nonautonomous bounded and uniformly continuous coefficients, without other initial assumptions on time-recurrence. Particular attention is given to the oscillation properties of the solutions as well as to a spectral theory appropriate for such systems. The book contains extensions of results which are well known when the coefficients are autonomous or periodic, as well as in the nonautonomous two-dimensional case. However, a substantial part of the theory presented here is new even in those much simpler situations. The authors make systematic use of basic facts concerning Lagrange planes and symplectic matrices, and apply some fundamental methods of topological dynamics and ergodic theory. Among the tools used in the analysis, which include Lyapunov exponents, Weyl matrices, exponential dichotomy, and weak disconjugacy, a fundamental role is played by the rotation number for linear Hamiltonian systems of general dimension. The properties of all these objects form the basis for the study of several themes concerning linear-quadratic control problems, including the linear regulator property, the Kalman-Bucy filter, the infinite-horizon optimization problem, the nonautonomous version of the Yakubovich Frequency Theorem, and dissipativity in the Willems sense. The book will be useful for graduate students and researchers interested in nonautonomous differential equations; dynamical systems and ergodic theory; spectral theory of differential operators; and control theory.
Stability of Differential Equations with Aftereffect
Author: N.V. Azbelev
Publisher: CRC Press
ISBN: 9780415269575
Category : Mathematics
Languages : en
Pages : 246
Book Description
Stability of Differential Equations with Aftereffect presents stability theory for differential equations concentrating on functional differential equations with delay, integro-differential equations, and related topics. The authors provide background material on the modern theory of functional differential equations and introduce some new flexible methods for investigating the asymptotic behaviour of solutions to a range of equations. The treatment also includes some results from the authors' research group based at Perm and provides a useful reference text for graduates and researchers working in mathematical and engineering science.
Publisher: CRC Press
ISBN: 9780415269575
Category : Mathematics
Languages : en
Pages : 246
Book Description
Stability of Differential Equations with Aftereffect presents stability theory for differential equations concentrating on functional differential equations with delay, integro-differential equations, and related topics. The authors provide background material on the modern theory of functional differential equations and introduce some new flexible methods for investigating the asymptotic behaviour of solutions to a range of equations. The treatment also includes some results from the authors' research group based at Perm and provides a useful reference text for graduates and researchers working in mathematical and engineering science.
Nonautonomous Dynamical Systems
Author: Peter E. Kloeden
Publisher: American Mathematical Soc.
ISBN: 0821868713
Category : Mathematics
Languages : en
Pages : 274
Book Description
The theory of nonautonomous dynamical systems in both of its formulations as processes and skew product flows is developed systematically in this book. The focus is on dissipative systems and nonautonomous attractors, in particular the recently introduced concept of pullback attractors. Linearization theory, invariant manifolds, Lyapunov functions, Morse decompositions and bifurcations for nonautonomous systems and set-valued generalizations are also considered as well as applications to numerical approximations, switching systems and synchronization. Parallels with corresponding theories of control and random dynamical systems are briefly sketched. With its clear and systematic exposition, many examples and exercises, as well as its interesting applications, this book can serve as a text at the beginning graduate level. It is also useful for those who wish to begin their own independent research in this rapidly developing area.
Publisher: American Mathematical Soc.
ISBN: 0821868713
Category : Mathematics
Languages : en
Pages : 274
Book Description
The theory of nonautonomous dynamical systems in both of its formulations as processes and skew product flows is developed systematically in this book. The focus is on dissipative systems and nonautonomous attractors, in particular the recently introduced concept of pullback attractors. Linearization theory, invariant manifolds, Lyapunov functions, Morse decompositions and bifurcations for nonautonomous systems and set-valued generalizations are also considered as well as applications to numerical approximations, switching systems and synchronization. Parallels with corresponding theories of control and random dynamical systems are briefly sketched. With its clear and systematic exposition, many examples and exercises, as well as its interesting applications, this book can serve as a text at the beginning graduate level. It is also useful for those who wish to begin their own independent research in this rapidly developing area.
Nonuniform Hyperbolicity
Author: Luis Barreira
Publisher:
ISBN: 9781299707306
Category :
Languages : en
Pages :
Book Description
A self-contained, comprehensive account of modern smooth ergodic theory, the mathematical foundation of deterministic chaos.
Publisher:
ISBN: 9781299707306
Category :
Languages : en
Pages :
Book Description
A self-contained, comprehensive account of modern smooth ergodic theory, the mathematical foundation of deterministic chaos.