Diamond Schottky Barrier Diodes

Diamond Schottky Barrier Diodes PDF Author: Mihai Brezeanu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Research on wide band gap semiconductors suitable for power electronicdevices has spread rapidly in the last decade. The remarkable results exhibited bysilicon carbide (SiC) Schottky batTier diodes (SBDs), commercially available since2001, showed the potential of wide band gap semiconductors for replacing silicon (Si)in the range of medium to high voltage applications, where high frequency operationis required. With superior physical and electrical properties, diamond became apotential competitor to SiC soon after Element Six reported in 2002 the successfulsynthesis of single crystal plasma deposited diamond with high catTier mobility. This thesis discusses the remarkable properties of diamond and introducesseveral device structures suitable for power electronics. The calculation of severalfigures of merit emphasize the advantages of diamond with respect to silicon andother wide band gap semiconductors and clearly identifies the areas where its impactwould be most significant. Information regarding the first synthesis of diamond, which took place back in 1954, together with data regarding the modern technologicalprocess which leads nowadays to high-quality diamond crystals suitable for electronicdevices, are reviewed. Models regarding the incomplete ionization of atomic dopantsand the variation of catTier mobility with doping level and temperature have beenelaborated and included in numerical simulators. The study introduces the novel diamond M-i-P Schottky diode, a version ofpower Schottky diode which takes advantage of the extremely high intrinsic holemobility. The structure overcomes the drawback induced by the high activationenergies of acceptor dopants in diamond which yield poor hole concentration at roomtemperature. The complex shape of the on-state characteristic exhibited by diamondM-i-P Schottky structures is thoroughly investigated by means of experimentalresults, numerical simulations and theoretical considerations. The fabrication of a ramp oxide termination on a diamond device is for thefirst time reported in this thesis. Both experimental and simulated results show thepotential of this termination structure, previously built on Si and SiC power devices. A comprehensive comparison between the ramp oxide and two other versions of thefield plate termination concept, the single step and the three-step structures, has beenperformed, considering aspects such as electrical performance, occupied area, complexity of technological process and cost. Based on experimental results presented in this study, together withpredictions made via simulations and theoretical models, it is concluded that diamondM-i-P Schottky diodes have the ability to deliver significantly higher performancecompared to that of SiC SBDs if issues such as material defects, Schottky contactformation and measurement of reliable ionization coefficients are carefully addressedin the near future.

Diamond Schottky Barrier Diodes

Diamond Schottky Barrier Diodes PDF Author: Mihai Brezeanu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Research on wide band gap semiconductors suitable for power electronicdevices has spread rapidly in the last decade. The remarkable results exhibited bysilicon carbide (SiC) Schottky batTier diodes (SBDs), commercially available since2001, showed the potential of wide band gap semiconductors for replacing silicon (Si)in the range of medium to high voltage applications, where high frequency operationis required. With superior physical and electrical properties, diamond became apotential competitor to SiC soon after Element Six reported in 2002 the successfulsynthesis of single crystal plasma deposited diamond with high catTier mobility. This thesis discusses the remarkable properties of diamond and introducesseveral device structures suitable for power electronics. The calculation of severalfigures of merit emphasize the advantages of diamond with respect to silicon andother wide band gap semiconductors and clearly identifies the areas where its impactwould be most significant. Information regarding the first synthesis of diamond, which took place back in 1954, together with data regarding the modern technologicalprocess which leads nowadays to high-quality diamond crystals suitable for electronicdevices, are reviewed. Models regarding the incomplete ionization of atomic dopantsand the variation of catTier mobility with doping level and temperature have beenelaborated and included in numerical simulators. The study introduces the novel diamond M-i-P Schottky diode, a version ofpower Schottky diode which takes advantage of the extremely high intrinsic holemobility. The structure overcomes the drawback induced by the high activationenergies of acceptor dopants in diamond which yield poor hole concentration at roomtemperature. The complex shape of the on-state characteristic exhibited by diamondM-i-P Schottky structures is thoroughly investigated by means of experimentalresults, numerical simulations and theoretical considerations. The fabrication of a ramp oxide termination on a diamond device is for thefirst time reported in this thesis. Both experimental and simulated results show thepotential of this termination structure, previously built on Si and SiC power devices. A comprehensive comparison between the ramp oxide and two other versions of thefield plate termination concept, the single step and the three-step structures, has beenperformed, considering aspects such as electrical performance, occupied area, complexity of technological process and cost. Based on experimental results presented in this study, together withpredictions made via simulations and theoretical models, it is concluded that diamondM-i-P Schottky diodes have the ability to deliver significantly higher performancecompared to that of SiC SBDs if issues such as material defects, Schottky contactformation and measurement of reliable ionization coefficients are carefully addressedin the near future.

Frequency Dependent Response of Diamond Schottky Barrier Diode to Large and Small Electrical Signals

Frequency Dependent Response of Diamond Schottky Barrier Diode to Large and Small Electrical Signals PDF Author: Boonchoat Paosawatyanyong
Publisher:
ISBN:
Category : Diamond thin films
Languages : en
Pages : 406

Get Book Here

Book Description


Power Electronics Device Applications of Diamond Semiconductors

Power Electronics Device Applications of Diamond Semiconductors PDF Author: Satoshi Koizumi
Publisher: Woodhead Publishing
ISBN: 0081021844
Category : Technology & Engineering
Languages : en
Pages : 468

Get Book Here

Book Description
Power Electronics Device Applications of Diamond Semiconductors presents state-of-the-art research on diamond growth, doping, device processing, theoretical modeling and device performance. The book begins with a comprehensive and close examination of diamond crystal growth from the vapor phase for epitaxial diamond and wafer preparation. It looks at single crystal vapor deposition (CVD) growth sectors and defect control, ultra high purity SC-CVD, SC diamond wafer CVD, heteroepitaxy on Ir/MqO and needle-induced large area growth, also discussing the latest doping and semiconductor characterization methods, fundamental material properties and device physics. The book concludes with a discussion of circuits and applications, featuring the switching behavior of diamond devices and applications, high frequency and high temperature operation, and potential applications of diamond semiconductors for high voltage devices. - Includes contributions from today's most respected researchers who present the latest results for diamond growth, doping, device fabrication, theoretical modeling and device performance - Examines why diamond semiconductors could lead to superior power electronics - Discusses the main challenges to device realization and the best opportunities for the next generation of power electronics

Electrical Properties of Thin Nanocrystalline Diamond Based Schottky Barrier Diodes and Other Two Terminal Structures

Electrical Properties of Thin Nanocrystalline Diamond Based Schottky Barrier Diodes and Other Two Terminal Structures PDF Author: Mitchell Douglas Parr
Publisher:
ISBN:
Category : Diamond thin films
Languages : en
Pages : 248

Get Book Here

Book Description


Modern Power Devices

Modern Power Devices PDF Author: B. Jayant Baliga
Publisher: Wiley-Interscience
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 504

Get Book Here

Book Description
Written in a tutorial form, the text supplies in-depth the physics, design, and fabrication technology for power devices. Each chapter includes a discussion of the basic concepts of device operation and their electrical characteristics, a detailed analysis of the device physics, and the technology of fabrication. Extensive analytical solutions are used to enable the reader to obtain an understanding of the physics.

High Power Diamond Schottky Diode

High Power Diamond Schottky Diode PDF Author: Aboulaye Traoré
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
This thesis was focused on high power diamond Schottky diodes fabrication. Diamond growth and its doping are today well mastered. The advent of vertical architectures (diode active layer grown on heavily doped diamond substrate) and pseudo-vertical (stack of diode active layer and heavily doped layer grown on insulating substrate) allowed minimizing the high serial resistance, which was induced by the high ionization energy of acceptor-type dopants (boron doped diamond) preferably used in rectifiers fabrications.Besides these geometrical configurations favoring high forward currents, diamond Schottky diodes (pseudo vertical or vertical structures) were limited by: I) the quality of diode active layer altered by defects propagation from heavily doped layer thus leading to lower blocking voltage (maximum critical field of 3 MV/cm reported) than the theoretical values (theoretical values of critical field of 10 MV/cm), II) Schottky electrodes selected and the thermal and chemical stability of interfaces formed with oxygen-terminated diamond surface (required getting a Schottky contact and reducing as much as possible the interface states). Schottky metal selection and diamond surface pretreatment are crucial to get low barrier heights (low forward voltage drop and so low losses), low defects density at interfaces (low leakage current), and a thermally stable interface (high operating temperature). In this thesis, we demonstrated that a pseudo vertical diamond Schottky diode based on an oxygen-terminated surface covered by an easily oxidizable metal like zirconium (Zr) combined with an optimal heavily doped layer, allows overcoming these limitations. We first found a trade-off between the thickness of heavily doped layer and its doping level in order to minimize defects generations and thus improve the quality of diode active layer grown on the heavily doped layer (Less defects propagations). On a second hand, the Zr metallic electrodes selected gave rise to a thin zirconia interface layer which was thermally stable thus preventing the oxygen layer desorption. Zr/oxidized diamond rectifiers exhibited better features than the current state of art: a high forward current density (1000 A/cm2 at 6 V), a high critical field above 7 MV/cm (1000 V blocking voltage with a leakage current less than 1 pA), a Baliga's power figure of merit above 244 MW/cm2 (the highest value reported), a good reproducibility regardless of diodes and samples, the possibility to get a barrier heights below 1 eV by annealing, and a thermal stability higher than 500°C.

Heavily Boron-Doped CVD Diamond for Pseudo-Vertical Schottky Barrier Diodes

Heavily Boron-Doped CVD Diamond for Pseudo-Vertical Schottky Barrier Diodes PDF Author: Rozita Rouzbahan (Doctor of Sciences: Physics)
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Silicon Carbide Power Devices

Silicon Carbide Power Devices PDF Author: B. Jayant Baliga
Publisher: World Scientific
ISBN: 9812774521
Category : Technology & Engineering
Languages : en
Pages : 526

Get Book Here

Book Description
Power semiconductor devices are widely used for the control and management of electrical energy. The improving performance of power devices has enabled cost reductions and efficiency increases resulting in lower fossil fuel usage and less environmental pollution. This book provides the first cohesive treatment of the physics and design of silicon carbide power devices with an emphasis on unipolar structures. It uses the results of extensive numerical simulations to elucidate the operating principles of these important devices. Sample Chapter(s). Chapter 1: Introduction (72 KB). Contents: Material Properties and Technology; Breakdown Voltage; PiN Rectifiers; Schottky Rectifiers; Shielded Schottky Rectifiers; Metal-Semiconductor Field Effect Transistors; The Baliga-Pair Configuration; Planar Power MOSFETs; Shielded Planar MOSFETs; Trench-Gate Power MOSFETs; Shielded Trendch-Gate MOSFETs; Charge Coupled Structures; Integral Diodes; Lateral High Voltage FETs; Synopsis. Readership: For practising engineers working on power devices, and as a supplementary textbook for a graduate level course on power devices.

Heavily Boron-doped CDV Diamond for Pseudo-vertical Schottky Barrier Diodes

Heavily Boron-doped CDV Diamond for Pseudo-vertical Schottky Barrier Diodes PDF Author: Rozita Rouzbahani
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Polycrystalline Diamond Schottky Diodes and Their Applications

Polycrystalline Diamond Schottky Diodes and Their Applications PDF Author: Ganming Zhao
Publisher:
ISBN:
Category : Diodes, Schottky-barrier
Languages : en
Pages : 432

Get Book Here

Book Description