Author: N.B. Singh
Publisher: N.B. Singh
ISBN:
Category : Computers
Languages : en
Pages : 154
Book Description
"DFT: Quantum Computing Methods" delves into the fusion of Density Functional Theory (DFT) with cutting-edge quantum computing technologies. This book navigates through foundational principles of DFT, revealing how quantum algorithms promise transformative advancements in computational chemistry and materials science. Offering insights accessible to both beginners and seasoned researchers, it explores the potential of quantum computing to revolutionize the simulation and design of molecules and materials, marking a significant leap forward in computational capabilities for scientific discovery and innovation.
DFT: Quantum Computing Methods
Author: N.B. Singh
Publisher: N.B. Singh
ISBN:
Category : Computers
Languages : en
Pages : 154
Book Description
"DFT: Quantum Computing Methods" delves into the fusion of Density Functional Theory (DFT) with cutting-edge quantum computing technologies. This book navigates through foundational principles of DFT, revealing how quantum algorithms promise transformative advancements in computational chemistry and materials science. Offering insights accessible to both beginners and seasoned researchers, it explores the potential of quantum computing to revolutionize the simulation and design of molecules and materials, marking a significant leap forward in computational capabilities for scientific discovery and innovation.
Publisher: N.B. Singh
ISBN:
Category : Computers
Languages : en
Pages : 154
Book Description
"DFT: Quantum Computing Methods" delves into the fusion of Density Functional Theory (DFT) with cutting-edge quantum computing technologies. This book navigates through foundational principles of DFT, revealing how quantum algorithms promise transformative advancements in computational chemistry and materials science. Offering insights accessible to both beginners and seasoned researchers, it explores the potential of quantum computing to revolutionize the simulation and design of molecules and materials, marking a significant leap forward in computational capabilities for scientific discovery and innovation.
Quantum Computing and Blockchain in Business
Author: Arunkumar Krishnakumar
Publisher: Packt Publishing Ltd
ISBN: 1838646132
Category : Mathematics
Languages : en
Pages : 335
Book Description
Fintech veteran and venture capitalist, Arunkumar Krishnakumar, cuts through the hype to bring us a first-hand look into how quantum computing and Blockchain together could redefine industries and life as we know it. Key FeaturesTake a practical perspective on quantum computing and Blockchain technologies and their impacts on key industriesGain insights from experts who are applying quantum computing or Blockchain in their fieldsSee where quantum computing and Blockchain are heading, and where the two may intersectBook Description Are quantum computing and Blockchain on a collision course or will they be the most important trends of this decade to disrupt industries and life as we know it? Fintech veteran and venture capitalist Arunkumar Krishnakumar cuts through the hype to bring us a first-hand look into how quantum computing and Blockchain together are redefining industries, including fintech, healthcare, and research. Through a series of interviews with domain experts, he also explores these technologies’ potential to transform national and global governance and policies – from how elections are conducted and how smart cities can be designed and optimized for the environment, to what cyberwarfare enabled by quantum cryptography might look like. In doing so, he also highlights challenges that these technologies have to overcome to go mainstream. Quantum Computing and Blockchain in Business explores the potential changes that quantum computing and Blockchain might bring about in the real world. After expanding on the key concepts and techniques, such as applied cryptography, qubits, and digital annealing, that underpin quantum computing and Blockchain, the book dives into how major industries will be impacted by these technologies. Lastly, we consider how the two technologies may come together in a complimentary way. What you will learnUnderstand the fundamentals of quantum computing and BlockchainGain insights from the experts who are using quantum computing and BlockchainDiscover the implications of these technologies for governance and healthcareLearn how Blockchain and quantum computing may influence logistics and financeUnderstand how these technologies are impacting research in areas such as chemistryFind out how these technologies may help the environment and influence smart city developmentUnderstand the implications for cybersecurity as these technologies evolveWho this book is for This book is for tech enthusiasts – developers, architects, managers, consultants, and venture capitalists – working in or interested in the latest developments in quantum computing and blockchain. While the book introduces key ideas, terms, and techniques used in these technologies, the main goal of this book is to prime readers for the practical adoption and applications of these technologies across varies industries and walks of life.
Publisher: Packt Publishing Ltd
ISBN: 1838646132
Category : Mathematics
Languages : en
Pages : 335
Book Description
Fintech veteran and venture capitalist, Arunkumar Krishnakumar, cuts through the hype to bring us a first-hand look into how quantum computing and Blockchain together could redefine industries and life as we know it. Key FeaturesTake a practical perspective on quantum computing and Blockchain technologies and their impacts on key industriesGain insights from experts who are applying quantum computing or Blockchain in their fieldsSee where quantum computing and Blockchain are heading, and where the two may intersectBook Description Are quantum computing and Blockchain on a collision course or will they be the most important trends of this decade to disrupt industries and life as we know it? Fintech veteran and venture capitalist Arunkumar Krishnakumar cuts through the hype to bring us a first-hand look into how quantum computing and Blockchain together are redefining industries, including fintech, healthcare, and research. Through a series of interviews with domain experts, he also explores these technologies’ potential to transform national and global governance and policies – from how elections are conducted and how smart cities can be designed and optimized for the environment, to what cyberwarfare enabled by quantum cryptography might look like. In doing so, he also highlights challenges that these technologies have to overcome to go mainstream. Quantum Computing and Blockchain in Business explores the potential changes that quantum computing and Blockchain might bring about in the real world. After expanding on the key concepts and techniques, such as applied cryptography, qubits, and digital annealing, that underpin quantum computing and Blockchain, the book dives into how major industries will be impacted by these technologies. Lastly, we consider how the two technologies may come together in a complimentary way. What you will learnUnderstand the fundamentals of quantum computing and BlockchainGain insights from the experts who are using quantum computing and BlockchainDiscover the implications of these technologies for governance and healthcareLearn how Blockchain and quantum computing may influence logistics and financeUnderstand how these technologies are impacting research in areas such as chemistryFind out how these technologies may help the environment and influence smart city developmentUnderstand the implications for cybersecurity as these technologies evolveWho this book is for This book is for tech enthusiasts – developers, architects, managers, consultants, and venture capitalists – working in or interested in the latest developments in quantum computing and blockchain. While the book introduces key ideas, terms, and techniques used in these technologies, the main goal of this book is to prime readers for the practical adoption and applications of these technologies across varies industries and walks of life.
Molecular Docking: Quantum Computing Methods
Author: N.B. Singh
Publisher: N.B. Singh
ISBN:
Category : Science
Languages : en
Pages : 99
Book Description
"Molecular Docking: Quantum Computing Methods" delves into the intersection of quantum computing and molecular sciences, presenting an in-depth exploration of how quantum algorithms and hardware can revolutionize molecular docking simulations. From foundational principles to advanced case studies, this book navigates the potential of quantum computing to expedite drug discovery, enhance materials science, and unlock new frontiers in computational chemistry. It serves as a comprehensive guide for researchers, students, and professionals looking to harness quantum technologies for transformative advancements in molecular modeling and simulation.
Publisher: N.B. Singh
ISBN:
Category : Science
Languages : en
Pages : 99
Book Description
"Molecular Docking: Quantum Computing Methods" delves into the intersection of quantum computing and molecular sciences, presenting an in-depth exploration of how quantum algorithms and hardware can revolutionize molecular docking simulations. From foundational principles to advanced case studies, this book navigates the potential of quantum computing to expedite drug discovery, enhance materials science, and unlock new frontiers in computational chemistry. It serves as a comprehensive guide for researchers, students, and professionals looking to harness quantum technologies for transformative advancements in molecular modeling and simulation.
Quantum Information and Quantum Computing for Chemical Systems
Author: Sabre Kais
Publisher: Frontiers Media SA
ISBN: 2889715094
Category : Science
Languages : en
Pages : 114
Book Description
Publisher: Frontiers Media SA
ISBN: 2889715094
Category : Science
Languages : en
Pages : 114
Book Description
A Mathematical Introduction to Electronic Structure Theory
Author: Lin Lin
Publisher: SIAM
ISBN: 1611975808
Category : Mathematics
Languages : en
Pages : 138
Book Description
Based on first principle quantum mechanics, electronic structure theory is widely used in physics, chemistry, materials science, and related fields and has recently received increasing research attention in applied and computational mathematics. This book provides a self-contained, mathematically oriented introduction to the subject and its associated algorithms and analysis. It will help applied mathematics students and researchers with minimal background in physics understand the basics of electronic structure theory and prepare them to conduct research in this area. The book begins with an elementary introduction of quantum mechanics, including the uncertainty principle and the Hartree?Fock theory, which is considered the starting point of modern electronic structure theory. The authors then provide an in-depth discussion of two carefully selected topics that are directly related to several aspects of modern electronic structure calculations: density matrix based algorithms and linear response theory. Chapter 2 introduces the Kohn?Sham density functional theory with a focus on the density matrix based numerical algorithms, and Chapter 3 introduces linear response theory, which provides a unified viewpoint of several important phenomena in physics and numerics. An understanding of these topics will prepare readers for more advanced topics in this field. The book concludes with the random phase approximation to the correlation energy. The book is written for advanced undergraduate and beginning graduate students, specifically those with mathematical backgrounds but without a priori knowledge of quantum mechanics, and can be used for self-study by researchers, instructors, and other scientists. The book can also serve as a starting point to learn about many-body perturbation theory, a topic at the frontier of the study of interacting electrons.
Publisher: SIAM
ISBN: 1611975808
Category : Mathematics
Languages : en
Pages : 138
Book Description
Based on first principle quantum mechanics, electronic structure theory is widely used in physics, chemistry, materials science, and related fields and has recently received increasing research attention in applied and computational mathematics. This book provides a self-contained, mathematically oriented introduction to the subject and its associated algorithms and analysis. It will help applied mathematics students and researchers with minimal background in physics understand the basics of electronic structure theory and prepare them to conduct research in this area. The book begins with an elementary introduction of quantum mechanics, including the uncertainty principle and the Hartree?Fock theory, which is considered the starting point of modern electronic structure theory. The authors then provide an in-depth discussion of two carefully selected topics that are directly related to several aspects of modern electronic structure calculations: density matrix based algorithms and linear response theory. Chapter 2 introduces the Kohn?Sham density functional theory with a focus on the density matrix based numerical algorithms, and Chapter 3 introduces linear response theory, which provides a unified viewpoint of several important phenomena in physics and numerics. An understanding of these topics will prepare readers for more advanced topics in this field. The book concludes with the random phase approximation to the correlation energy. The book is written for advanced undergraduate and beginning graduate students, specifically those with mathematical backgrounds but without a priori knowledge of quantum mechanics, and can be used for self-study by researchers, instructors, and other scientists. The book can also serve as a starting point to learn about many-body perturbation theory, a topic at the frontier of the study of interacting electrons.
Density Functional Theory
Author: David S. Sholl
Publisher: John Wiley & Sons
ISBN: 1118211049
Category : Science
Languages : en
Pages : 252
Book Description
Demonstrates how anyone in math, science, and engineering can master DFT calculations Density functional theory (DFT) is one of the most frequently used computational tools for studying and predicting the properties of isolated molecules, bulk solids, and material interfaces, including surfaces. Although the theoretical underpinnings of DFT are quite complicated, this book demonstrates that the basic concepts underlying the calculations are simple enough to be understood by anyone with a background in chemistry, physics, engineering, or mathematics. The authors show how the widespread availability of powerful DFT codes makes it possible for students and researchers to apply this important computational technique to a broad range of fundamental and applied problems. Density Functional Theory: A Practical Introduction offers a concise, easy-to-follow introduction to the key concepts and practical applications of DFT, focusing on plane-wave DFT. The authors have many years of experience introducing DFT to students from a variety of backgrounds. The book therefore offers several features that have proven to be helpful in enabling students to master the subject, including: Problem sets in each chapter that give readers the opportunity to test their knowledge by performing their own calculations Worked examples that demonstrate how DFT calculations are used to solve real-world problems Further readings listed in each chapter enabling readers to investigate specific topics in greater depth This text is written at a level suitable for individuals from a variety of scientific, mathematical, and engineering backgrounds. No previous experience working with DFT calculations is needed.
Publisher: John Wiley & Sons
ISBN: 1118211049
Category : Science
Languages : en
Pages : 252
Book Description
Demonstrates how anyone in math, science, and engineering can master DFT calculations Density functional theory (DFT) is one of the most frequently used computational tools for studying and predicting the properties of isolated molecules, bulk solids, and material interfaces, including surfaces. Although the theoretical underpinnings of DFT are quite complicated, this book demonstrates that the basic concepts underlying the calculations are simple enough to be understood by anyone with a background in chemistry, physics, engineering, or mathematics. The authors show how the widespread availability of powerful DFT codes makes it possible for students and researchers to apply this important computational technique to a broad range of fundamental and applied problems. Density Functional Theory: A Practical Introduction offers a concise, easy-to-follow introduction to the key concepts and practical applications of DFT, focusing on plane-wave DFT. The authors have many years of experience introducing DFT to students from a variety of backgrounds. The book therefore offers several features that have proven to be helpful in enabling students to master the subject, including: Problem sets in each chapter that give readers the opportunity to test their knowledge by performing their own calculations Worked examples that demonstrate how DFT calculations are used to solve real-world problems Further readings listed in each chapter enabling readers to investigate specific topics in greater depth This text is written at a level suitable for individuals from a variety of scientific, mathematical, and engineering backgrounds. No previous experience working with DFT calculations is needed.
Time-Dependent Density-Functional Theory
Author: Carsten Ullrich
Publisher: Oxford University Press
ISBN: 0199563020
Category : Science
Languages : en
Pages : 541
Book Description
Time-dependent density-functional theory (TDDFT) is a quantum mechanical approach for the dynamical properties of electrons in matter. It's widely used in (bio)chemistry and physics to calculate molecular excitation energies and optical properties of materials. This is the first graduate-level text on the formal framework and applications of TDDFT.
Publisher: Oxford University Press
ISBN: 0199563020
Category : Science
Languages : en
Pages : 541
Book Description
Time-dependent density-functional theory (TDDFT) is a quantum mechanical approach for the dynamical properties of electrons in matter. It's widely used in (bio)chemistry and physics to calculate molecular excitation energies and optical properties of materials. This is the first graduate-level text on the formal framework and applications of TDDFT.
Advances in Physical Organic Chemistry
Author:
Publisher: Academic Press
ISBN: 0323986013
Category : Science
Languages : en
Pages : 148
Book Description
Advances in Physical Organic Chemistry, Volume 56 presents the latest reviews of recent work in physical organic chemistry. The book provides a valuable source of information that is ideal not only for physical organic chemists applying their expertise to both novel and traditional problems, but also for non-specialists across diverse areas who identify a physical organic component in their approach to research. Chapters due to be included in this release cover flavin-dependent enzyme catalysed reactions, coacervates and their properties, heavy atom tunnelling, machine learning, acidity and substituent effects. - Reviews the application of quantitative and mathematical methods to help readers understand chemical problems - Provides the chemical community with authoritative and critical assessments of the many aspects of physical organic chemistry - Covers organic, organometallic, bioorganic, enzymes and materials topics - Presents the only regularly published resource for reviews in physical organic chemistry - Written by authoritative experts who cover a wide range of topics that require a quantitative, molecular-level understanding of phenomena across a diverse range of disciplines
Publisher: Academic Press
ISBN: 0323986013
Category : Science
Languages : en
Pages : 148
Book Description
Advances in Physical Organic Chemistry, Volume 56 presents the latest reviews of recent work in physical organic chemistry. The book provides a valuable source of information that is ideal not only for physical organic chemists applying their expertise to both novel and traditional problems, but also for non-specialists across diverse areas who identify a physical organic component in their approach to research. Chapters due to be included in this release cover flavin-dependent enzyme catalysed reactions, coacervates and their properties, heavy atom tunnelling, machine learning, acidity and substituent effects. - Reviews the application of quantitative and mathematical methods to help readers understand chemical problems - Provides the chemical community with authoritative and critical assessments of the many aspects of physical organic chemistry - Covers organic, organometallic, bioorganic, enzymes and materials topics - Presents the only regularly published resource for reviews in physical organic chemistry - Written by authoritative experts who cover a wide range of topics that require a quantitative, molecular-level understanding of phenomena across a diverse range of disciplines
Quantum Techniques In Stochastic Mechanics
Author: John C Baez
Publisher: World Scientific
ISBN: 981322696X
Category : Science
Languages : en
Pages : 276
Book Description
We introduce the theory of chemical reaction networks and their relation to stochastic Petri nets — important ways of modeling population biology and many other fields. We explain how techniques from quantum mechanics can be used to study these models. This relies on a profound and still mysterious analogy between quantum theory and probability theory, which we explore in detail. We also give a tour of key results concerning chemical reaction networks and Petri nets.
Publisher: World Scientific
ISBN: 981322696X
Category : Science
Languages : en
Pages : 276
Book Description
We introduce the theory of chemical reaction networks and their relation to stochastic Petri nets — important ways of modeling population biology and many other fields. We explain how techniques from quantum mechanics can be used to study these models. This relies on a profound and still mysterious analogy between quantum theory and probability theory, which we explore in detail. We also give a tour of key results concerning chemical reaction networks and Petri nets.
Computer-Aided Drug Discovery Methods: A Brief Introduction
Author: Manos C. Vlasiou
Publisher: Bentham Science Publishers
ISBN: 9815305042
Category : Medical
Languages : en
Pages : 150
Book Description
Computer-Aided Drug Discovery Methods: A Brief Introduction explores the cutting-edge field at the intersection of computational science and medicinal chemistry. This comprehensive volume navigates from foundational concepts to advanced methodologies, illuminating how computational tools accelerate the discovery of new therapeutics. Beginning with an overview of drug discovery principles, the book explains topics such as pharmacophore modeling, molecular dynamics simulations, and molecular docking. It discusses the application of density functional theory and the role of artificial intelligence in therapeutic development, showcasing successful case studies and innovations in COVID-19 research. Ideal for undergraduate and graduate students, as well as researchers in academia and industry, this book serves as a vital resource in understanding the complex landscape of modern drug discovery. It emphasizes the synergy between computational methods and experimental validation, shaping the future of pharmaceutical sciences toward more effective and targeted therapies.
Publisher: Bentham Science Publishers
ISBN: 9815305042
Category : Medical
Languages : en
Pages : 150
Book Description
Computer-Aided Drug Discovery Methods: A Brief Introduction explores the cutting-edge field at the intersection of computational science and medicinal chemistry. This comprehensive volume navigates from foundational concepts to advanced methodologies, illuminating how computational tools accelerate the discovery of new therapeutics. Beginning with an overview of drug discovery principles, the book explains topics such as pharmacophore modeling, molecular dynamics simulations, and molecular docking. It discusses the application of density functional theory and the role of artificial intelligence in therapeutic development, showcasing successful case studies and innovations in COVID-19 research. Ideal for undergraduate and graduate students, as well as researchers in academia and industry, this book serves as a vital resource in understanding the complex landscape of modern drug discovery. It emphasizes the synergy between computational methods and experimental validation, shaping the future of pharmaceutical sciences toward more effective and targeted therapies.