Development of Laser Accelerated MeV Ion Sources

Development of Laser Accelerated MeV Ion Sources PDF Author: Keith Markey
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Development of Laser Accelerated MeV Ion Sources

Development of Laser Accelerated MeV Ion Sources PDF Author: Keith Markey
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Laser-Driven Sources of High Energy Particles and Radiation

Laser-Driven Sources of High Energy Particles and Radiation PDF Author: Leonida Antonio Gizzi
Publisher: Springer Nature
ISBN: 3030258505
Category : Science
Languages : en
Pages : 254

Get Book Here

Book Description
This volume presents a selection of articles based on inspiring lectures held at the “Capri” Advanced Summer School, an original event conceived and promoted by Leonida Antonio Gizzi and Ralph Assmann that focuses on novel schemes for plasma-based particle acceleration and radiation sources, and which brings together researchers from the conventional accelerator community and from the high-intensity laser-matter interaction research fields. Training in these fields is highly relevant for ultra-intense lasers and applications, which have enjoyed dramatic growth following the development of major European infrastructures like the Extreme Light Infrastructure (ELI) and the EuPRAXIA project. The articles preserve the tutorial character of the lectures and reflect the latest advances in their respective fields. The volume is mainly intended for PhD students and young researchers getting started in this area, but also for scientists from other fields who are interested in the latest developments. The content will also appeal to radiobiologists and medical physicists, as it includes contributions on potential applications of laser-based particle accelerators.

Optimization of Ion Acceleration from High-intensity Laser-plasma Interactions

Optimization of Ion Acceleration from High-intensity Laser-plasma Interactions PDF Author: Hsuan-Gu Chou
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
High-energy (100s MeV), high spectral quality ion beams are important for many applications like radiography of plasmas, isochoric heating of materials, and tumor therapy. Advances in the development of intense short pulse lasers, recognized with the 2018 Nobel Prize in physics, have been seen as a very promising route to drive compact ion beam sources. However, despite signficant progress over the past two decades, the control of the ion beam properties remains an outstanding challenge. In this Thesis, we discuss two approaches for controlling and optimizing these laser-driven ion beams, using particle-in-cell simulations and theoretical analysis. First, we show that in laser radiation pressure acceleration, the spectral quality of the ion beam is determined by electron heating, which is dictated by the growth of a surface instability. We show that its growth rate imposes an upper limit on the laser pulse duration, and can limit the maximum peak ion beam energy. Next, we explore the development of a hybrid accelerator that combines the advantages of laser-driven beams (compact, high-charge, 10s MeV) with high-gradient RF acceleration in a meter-scale linac, eliminating the large and expensive radio frequency quadrupoles for bunching. Our one-to-one simulations show that the space-charge field plays a critical role in the acceleration effectiveness, and that by tuning the distance at which the laser-driven beam enters the RF, the space-charge field can be controlled such that it actually increases the beam capture. These are important in guiding future experimental developments, for example for the ultrashort laser pulses at state-of-the-art laser facilities and high-gradient linacs, for which we showcase the possibility of a compact (4.5 m) hybrid accelerator that produces a high-quality, high-charge 250 MeV proton beam.

Frontiers in High Energy Density Physics

Frontiers in High Energy Density Physics PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 030908637X
Category : Science
Languages : en
Pages : 177

Get Book Here

Book Description
Recent scientific and technical advances have made it possible to create matter in the laboratory under conditions relevant to astrophysical systems such as supernovae and black holes. These advances will also benefit inertial confinement fusion research and the nation's nuclear weapon's program. The report describes the major research facilities on which such high energy density conditions can be achieved and lists a number of key scientific questions about high energy density physics that can be addressed by this research. Several recommendations are presented that would facilitate the development of a comprehensive strategy for realizing these research opportunities.

Investigation of Laser-driven Particle Acceleration for the Development of Tunable Ion Sources for Applications in High Energy Density Science

Investigation of Laser-driven Particle Acceleration for the Development of Tunable Ion Sources for Applications in High Energy Density Science PDF Author: Raspberry Simpson
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Since the innovation of chirped pulse amplification by Donna Strickland and Gerard Morou in 1985, laser technology has evolved such that we can create short pulses of light (10−15 − 10−12 seconds) with high peak powers (1015 Watts) in small, focused spots (∼a few microns). A prolific area of research that has emerged over the last two decades is the use of these high-intensity lasers to drive particle beams. Possible applications of these particle sources include isotope production for medical applications, proton cancer therapy, and fusion energy schemes. This thesis focuses on laser-driven proton acceleration and adds to the existing foundation of work in the area by investigating new empirical relationships, conducting new measurements of the accelerating electric field responsible for laser-driven proton acceleration, and developing a new data analysis methodology using machine learning. This work first examines laser-driven proton acceleration in the multi-picosecond regime (>1ps) at laser intensities of 1017 - 1019 W/cm2. This is motivated by recent results on laser platforms like the National Ignition Facility-Advanced Radiographic Capability laser and the OMEGA-Extended Performance laser, which have demonstrated enhanced accelerated proton energies when compared to established scaling laws. A detailed scaling study was performed on the Titan laser, which provided the basis for a new analytical scaling presented in this thesis. In addition, high-repetition-rate (HRR) lasers that can operate at 1 Hz or faster are now coming online around the world, opening a myriad of opportunities for accelerating the rate of learning on laser-driven particle experiments. To unlock these applications, HRR diagnostics combined with real-time analysis tools must be developed to process experimental measurements and outputs at HRR. Towards this goal, this thes is presents a novel automated data analysis framework based on machine learning and proposes a new methodology based on representation learning to integrate heterogeneous data constrain parameters that are not directly measurable. Taken together, these thrusts enable a new preliminary framework for enhanced analysis of complex HRR experiments and a foundational step towards realizing the goal of tunable laser-driven particle sources.

Applications of Laser-Driven Particle Acceleration

Applications of Laser-Driven Particle Acceleration PDF Author: Paul Bolton
Publisher: CRC Press
ISBN: 042981710X
Category : Science
Languages : en
Pages : 388

Get Book Here

Book Description
The first book of its kind to highlight the unique capabilities of laser-driven acceleration and its diverse potential, Applications of Laser-Driven Particle Acceleration presents the basic understanding of acceleration concepts and envisioned prospects for selected applications. As the main focus, this new book explores exciting and diverse application possibilities, with emphasis on those uniquely enabled by the laser driver that can also be meaningful and realistic for potential users. It also emphasises distinction, in the accelerator context, between laser-driven accelerated particle sources and the integrated laser-driven particle accelerator system (all-optical and hybrid versions). A key aim of the book is to inform multiple, interdisciplinary research communities of the new possibilities available and to inspire them to engage with laser-driven acceleration, further motivating and advancing this developing field. Material is presented in a thorough yet accessible manner, making it a valuable reference text for general scientific and engineering researchers who are not necessarily subject matter experts. Applications of Laser-Driven Particle Acceleration is edited by Professors Paul R. Bolton, Katia Parodi, and Jörg Schreiber from the Department of Medical Physics at the Ludwig-Maximilians-Universität München in München, Germany. Features: Reviews the current understanding and state-of-the-art capabilities of laser-driven particle acceleration and associated energetic photon and neutron generation Presents the intrinsically unique features of laser-driven acceleration and particle bunch yields Edited by internationally renowned researchers, with chapter contributions from global experts

Laser-plasma Acceleration : Proceedings of the International School of Physics "Enrico Fermi", Varenna on Lake Como, Villa Monastero, 20-25 June 2011

Laser-plasma Acceleration : Proceedings of the International School of Physics Author: Fernando Ferroni
Publisher: IOS Press
ISBN: 1614991286
Category : Science
Languages : en
Pages : 286

Get Book Here

Book Description
Impressive progress has been made in the field of laser-plasma acceleration in the last decade, with outstanding achievements from both experimental and theoretical viewpoints. Closely exploiting the development of ultra-intense, ultrashort pulse lasers, laser-plasma acceleration has developed rapidly, achieving accelerating gradients of the order of tens of GeV/m, and making the prospect of miniature accelerators a more realistic possibility.This book presents the lectures delivered at the Enrico Fermi International School of Physics and summer school: 'Laser-Plasma Acceleration', held in Varenna, Italy, in June 2011.

High Gain, High Power Free Electron Laser: Physics and Application to TeV Particle Acceleration

High Gain, High Power Free Electron Laser: Physics and Application to TeV Particle Acceleration PDF Author: R. Bonifacio
Publisher: Elsevier
ISBN: 0444598723
Category : Science
Languages : en
Pages : 326

Get Book Here

Book Description
During the past few years the physics and technology of charged particle beams on which electron-positron linear colliders in the TeV region, storage rings from synchrotron radiation sources and Free Electron Lasers are based, has seen a remarkable development. The purpose of this series of schools is to address the physics and technology issues of this field, train young people and at the same time provide a forum for discussions on recent advances for scientists active in this field. The subjects chosen for this first course reflect the recent interest in TeV electron positron colliders, the possibility offered by Free Electron Lasers to power them and the developments in the production of high brightness electron beams.

Ion Acceleration from the Interaction of Ultra-Intense Lasers with Solid Foils

Ion Acceleration from the Interaction of Ultra-Intense Lasers with Solid Foils PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The discovery that ultra-intense laser pulses (I> 10[sup 18] W/cm[sup 2]) can produce short pulse, high energy proton beams has renewed interest in the fundamental mechanisms that govern particle acceleration from laser-solid interactions. Experiments have shown that protons present as hydrocarbon contaminants on laser targets can be accelerated up to energies> 50 MeV. Different theoretical models that explain the observed results have been proposed. One model describes a front-surface acceleration mechanism based on the ponderomotive potential of the laser pulse. At high intensities (I> 10[sup 18] W/cm[sup 2]), the quiver energy of an electron oscillating in the electric field of the laser pulse exceeds the electron rest mass, requiring the consideration of relativistic effects. The relativistically correct ponderomotive potential is given by U[sub p] = ([1 + I[lambda][sup 2]/1.3 x 10[sup 18]][sup 1/2] - 1) m[sub o]c[sup 2], where I[lambda][sup 2] is the irradiance in W [micro]m[sup 2]/cm[sup 2] and m[sub o]c[sup 2] is the electron rest mass. At laser irradiance of I[lambda][sup 2] [approx] 10[sup 20] W [micro]m[sup 2]/cm[sup 2], the ponderomotive potential can be of order several MeV. A few recent experiments--discussed in Chapter 3 of this thesis--consider this ponderomotive potential sufficiently strong to accelerate protons from the front surface of the target to energies up to tens of MeV. Another model, known as Target Normal Sheath Acceleration (TNSA), describes the mechanism as an electrostatic sheath on the back surface of the laser target. According to the TNSA model, relativistic hot electrons created at the laser-solid interaction penetrate the foil where a few escape to infinity. The remaining hot electrons are retained by the target potential and establish an electrostatic sheath on the back surface of the target. In this thesis we present several experiments that study the accelerated ions by affecting the contamination layer from which they originate. Radiative heating was employed as a method of removing contamination from palladium targets doped with deuterium. We present evidence that ions heavier than protons can be accelerated if hydrogenous contaminants that cover the laser target can be removed. We show that deuterons can be accelerated from the deuterated-palladium target, which has been radiatively heated to remove contaminants. Impinging a deuteron beam onto a tritiated-titanium catcher could lead to the development of a table-top source of short-pulse, 14-MeV fusion neutrons. We also show that by using an argon-ion sputter gun, contaminants from one side of the laser target can be selectively removed without affecting the other side. We show that irradiating a thin metallic foil with an ultra-intense laser pulse produces a proton beam with a yield of 1.5-2.5 10[sup 11] and temperature, kT = 1.5 MeV with a maximum proton energy> 9 MeV. Removing contaminants from the front surface of the laser target with an argon-ion sputter gun, had no observable effect on the proton beam. However, removing contaminants from the back surface of the laser target reduced the proton beam by two orders of magnitude to, at most, a yield of [approx] 10[sup 9] and a maximum proton energy 4 MeV. Based on these observations, we conclude that the majority ( 99%) of high energy protons (E> 5 MeV) from the interaction of an ultra-intense laser pulse with a thin foil originate on the back surface of the foil--as predicted by the TNSA model. Our experimental results are in agreement with PIC simulations showing back surface protons reach energies up to 13 MeV, while front surface protons reach a maximum energy of 4 MeV. Well diagnosed and controllable proton beams will have many applications: neutron radiography, material damage studies, production of medical isotopes, and as a high-resolution radiography tool for diagnosing opaque materials and plasmas. Well collimated and focusable ion beams may also prove beneficial for alternative inertial-fusion concepts such as proton fast ignition, a potentially viable method for achieving a controlled fusion reaction in the laboratory earlier than expected.

Handbook of Ion Sources

Handbook of Ion Sources PDF Author: Bernhard Wolf
Publisher: CRC Press
ISBN: 9780849325021
Category : Technology & Engineering
Languages : en
Pages : 558

Get Book Here

Book Description
The Handbook of Ion Sources delivers the data needed for daily work with ion sources. It also gives information for the selection of a suitable ion source and ion production method for a specific application. The Handbook concentrates on practical aspects and introduces the principle function of ion sources. The basic plasma parameters are defined and discussed. The working principles of various ion sources are explained, and examples of each type of ion source are presented with their operational data. Tables of ion current for various elements and charge states summarize the performance of different ion sources. The problems related to the production of ions of non-gaseous elements are detailed, and data on useful materials for evaporation and ion source construction are summarized. Additional chapters are dedicated to extraction and beam formation, ion beam diagnosis, ion source electronics, and computer codes for extraction, acceleration, and beam transport. Emittance and brilliance are described and space charge effects and neutralization discussed. Various methods for the measurement of current, profile, emittance, and time structure are presented and compared. Intensity limits for these methods are provided for different ion energies. Typical problems related to the operation of ion source plasmas are discussed and practical examples of circuits are given. The influence of high voltage on ion source electronics and possibilities for circuit protection are covered. The generation of microwaves and various microwave equipment are described and special problems related to microwave operation are summarized. The Handbook of Ion Sources is a valuable reference on the subject, of benefit to practitioners and graduate students interested in accelerators, ion implantation, and ion beam techniques.