Development of a Forward/adjoint Hybrid Monte Carlo Absorbed Dose Calculational Method for Use in Radiation Therapy

Development of a Forward/adjoint Hybrid Monte Carlo Absorbed Dose Calculational Method for Use in Radiation Therapy PDF Author: Mat Mustafa Tamimi
Publisher:
ISBN:
Category : Cancer
Languages : en
Pages : 163

Get Book Here

Book Description
A successful radiation therapy treatment aims at conforming (i.e., concentrating) radiation dose to the entire tumor volume (i.e., diseased area) while avoiding surrounding normal tissue (i.e., healthy non-diseased areas). This objective is achieved clinically by finding a set of radiation beam parameters that successfully deliver the desired dose distribution. In this project, a hybrid forward/adjoint Monte Carlo based absorbed dose computation method is developed and tested, aimed at eventual implementation in a radiation therapy external beam treatment planning system to predict the absorbed dose produced by a medical linear accelerator. This absorbed dose calculational engine was designed to be:1. Efficient. This is achieved by incorporating several Monte Carlo techniques used in the Nuclear Engineering field for deep penetration and reactor analysis problem. 2. Flexible. This is achieved by using a Cartesian grid and a voxelized material map. Currently most of the absorbed dose calculation algorithms in radiotherapy are 3-D based predictive models. The use of such algorithms results in treatment planning quality that depends tremendously on the planner’s experience and knowledge base. This dependence, along with inaccuracy in predicting absorbed dose due to the assumptions and simplifications used in these algorithms, can result in a predicted absorbed dose that under- or over-predicts the delivered dose. As an alternative, forward and adjoint Monte Carlo absorbed dose computation methods have been used and validated by several authors (Difilippo, 1998; Goldstein & Regev, 1999; Jeraj & Keall, 1999). However, in the “pure” forward or adjoint methods, each change in the radiation beam parameters requires its own time-consuming 3D calculation; for the hybrid technique developed in this research, a single 3D calculation for each desired dose region (tumor or healthy organ) is all that is required. This project also improves the Monte Carlo methodology by incorporating the use of voxelized fictitious scattering and surface forward/adjoint coupling. The accuracy is demonstrated through comparison with forward and adjoint MCNP calculations of a simple beam/patient sample problem.

Development of a Forward/adjoint Hybrid Monte Carlo Absorbed Dose Calculational Method for Use in Radiation Therapy

Development of a Forward/adjoint Hybrid Monte Carlo Absorbed Dose Calculational Method for Use in Radiation Therapy PDF Author: Mat Mustafa Tamimi
Publisher:
ISBN:
Category : Cancer
Languages : en
Pages : 163

Get Book Here

Book Description
A successful radiation therapy treatment aims at conforming (i.e., concentrating) radiation dose to the entire tumor volume (i.e., diseased area) while avoiding surrounding normal tissue (i.e., healthy non-diseased areas). This objective is achieved clinically by finding a set of radiation beam parameters that successfully deliver the desired dose distribution. In this project, a hybrid forward/adjoint Monte Carlo based absorbed dose computation method is developed and tested, aimed at eventual implementation in a radiation therapy external beam treatment planning system to predict the absorbed dose produced by a medical linear accelerator. This absorbed dose calculational engine was designed to be:1. Efficient. This is achieved by incorporating several Monte Carlo techniques used in the Nuclear Engineering field for deep penetration and reactor analysis problem. 2. Flexible. This is achieved by using a Cartesian grid and a voxelized material map. Currently most of the absorbed dose calculation algorithms in radiotherapy are 3-D based predictive models. The use of such algorithms results in treatment planning quality that depends tremendously on the planner’s experience and knowledge base. This dependence, along with inaccuracy in predicting absorbed dose due to the assumptions and simplifications used in these algorithms, can result in a predicted absorbed dose that under- or over-predicts the delivered dose. As an alternative, forward and adjoint Monte Carlo absorbed dose computation methods have been used and validated by several authors (Difilippo, 1998; Goldstein & Regev, 1999; Jeraj & Keall, 1999). However, in the “pure” forward or adjoint methods, each change in the radiation beam parameters requires its own time-consuming 3D calculation; for the hybrid technique developed in this research, a single 3D calculation for each desired dose region (tumor or healthy organ) is all that is required. This project also improves the Monte Carlo methodology by incorporating the use of voxelized fictitious scattering and surface forward/adjoint coupling. The accuracy is demonstrated through comparison with forward and adjoint MCNP calculations of a simple beam/patient sample problem.

Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine

Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine PDF Author: H. Zaidi
Publisher: CRC Press
ISBN: 1000687686
Category : Medical
Languages : en
Pages : 441

Get Book Here

Book Description
Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine examines the applications of Monte Carlo (MC) calculations in therapeutic nuclear medicine, from basic principles to computer implementations of software packages and their applications in radiation dosimetry and treatment planning. With chapters written by recognized authorit

Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications

Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications PDF Author: Andreas Kling
Publisher: Springer Science & Business Media
ISBN: 3642182119
Category : Science
Languages : en
Pages : 1200

Get Book Here

Book Description
This book focuses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications. Special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields.

Monte Carlo Methods for Radiation Transport

Monte Carlo Methods for Radiation Transport PDF Author: Oleg N. Vassiliev
Publisher: Springer
ISBN: 3319441418
Category : Science
Languages : en
Pages : 292

Get Book Here

Book Description
This book is a guide to the use of Monte Carlo techniques in radiation transport. This topic is of great interest for medical physicists. Praised as a "gold standard" for accurate radiotherapy dose calculations, Monte Carlo has stimulated a high level of research activity that has produced thousands of papers within the past few years. The book is designed primarily to address the needs of an academically inclined medical physicist who wishes to learn the technique, as well as experienced users of standard Monte Carlo codes who wish to gain insight into the underlying mathematics of Monte Carlo algorithms. The book focuses on the fundamentals—giving full attention to and explaining the very basic concepts. It also includes advanced topics and covers recent advances such as transport of charged particles in magnetic fields and the grid-based solvers of the Boltzmann equation.

Monte Carlo Calculations in Nuclear Medicine, Second Edition

Monte Carlo Calculations in Nuclear Medicine, Second Edition PDF Author: Michael Ljungberg
Publisher: CRC Press
ISBN: 1439841098
Category : Medical
Languages : en
Pages : 361

Get Book Here

Book Description
From first principles to current computer applications, Monte Carlo Calculations in Nuclear Medicine, Second Edition: Applications in Diagnostic Imaging covers the applications of Monte Carlo calculations in nuclear medicine and critically reviews them from a diagnostic perspective. Like the first edition, this book explains the Monte Carlo method and the principles behind SPECT and PET imaging, introduces the reader to some Monte Carlo software currently in use, and gives the reader a detailed idea of some possible applications of Monte Carlo in current research in SPECT and PET. New chapters in this edition cover codes and applications in pre-clinical PET and SPECT. The book explains how Monte Carlo methods and software packages can be applied to evaluate scatter in SPECT and PET imaging, collimation, and image deterioration. A guide for researchers and students developing methods to improve image resolution, it also demonstrates how Monte Carlo techniques can be used to simulate complex imaging systems.

Development of a Fast Monte Carlo Code for Dose Calculation in a Treatment Planning and Feasibility Study of High Contrast Portal Imaging

Development of a Fast Monte Carlo Code for Dose Calculation in a Treatment Planning and Feasibility Study of High Contrast Portal Imaging PDF Author: Keivan Jabbari Najafabadi
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A fast and accurate treatment planning system is essential for radiation therapy and Monte Carlo (MC) techniques produce the most accurate results for dose calculation in treatment planning. In this work, we developed a fast Monte Carlo code based on pre-calculated data (PMC, Pre-calculated Monte Carlo) for applications in radiation therapy treatment planning. The PMC code takes advantage of large available memory in current computer hardware for extensive generation of pre-calculated data. Primary tracks of electrons are generated in the middle of homogeneous materials (water, air, bone, lung) and with energies between 0.2 and 18 MeV using the EGSnrc code. Secondary electrons are not transported but their position, energy, charge and direction are saved and used as a primary particle. Based on medium type and incident electron energy, a track is selected from the pre-calculated set. The performance of the method is tested in various homogeneous and heterogeneous configurations and the results were generally within 2% compared to EGSnrc but with a 40-60 times speed improvement. Pre-calculated Monte Carlo codes are accurate, fast and physics-independent and therefore applicable to different radiation types including heavy-charged particles. In another project, we worked on Monte Carlo feasibility study to use orthogonal bremsstrahlung beams for imaging in radiation therapy. The basic characteristics of orthogonal bremsstrahlung beams are studied and the feasibility of improved contrast imaging in linear accelerator with such a beam is evaluated. In the context of this work orthogonal bremsstrahlung beams represent the component of the bremsstrahlung distribution perpend.

A Monte Carlo Primer

A Monte Carlo Primer PDF Author: Stephen A. Dupree
Publisher: Springer Science & Business Media
ISBN: 1441984917
Category : Science
Languages : en
Pages : 348

Get Book Here

Book Description
The mathematical technique of Monte Carlo, as applied to the transport of sub-atomic particles, has been described in numerous reports and books since its formal development in the 1940s. Most of these instructional efforts have been directed either at the mathematical basis of the technique or at its practical application as embodied in the several large, formal computer codes available for performing Monte Carlo transport calculations. This book attempts to fill what appears to be a gap in this Monte Carlo literature between the mathematics and the software. Thus, while the mathematical basis for Monte Carlo transport is covered in some detail, emphasis is placed on the application of the technique to the solution of practical radiation transport problems. This is done by using the PC as the basic teaching tool. This book assumes the reader has a knowledge of integral calculus, neutron transport theory, and Fortran programming. It also assumes the reader has available a PC with a Fortran compiler. Any PC of reasonable size should be adequate to reproduce the examples or solve the exercises contained herein. The authors believe it is important for the reader to execute these examples and exercises, and by doing so to become accomplished at preparing appropriate software for solving radiation transport problems using Monte Carlo. The step from the software described in this book to the use of production Monte Carlo codes should be straightforward.

Monte Carlo Simulation in the Radiological Sciences

Monte Carlo Simulation in the Radiological Sciences PDF Author: Richard L. Morin
Publisher: CRC Press
ISBN: 1000012751
Category : Medical
Languages : en
Pages : 269

Get Book Here

Book Description
First Published in 1988, this book offers a full exploration into the applications of the Monte Carlo Simulation. Carefully compiled and filled with a vast repertoire of notes, diagrams, and references this book serves as a useful reference for Students of Radiology, and other practitioners in their respective fields.

Monte Carlo Method for Solving Inverse Problems of Radiation Transfer

Monte Carlo Method for Solving Inverse Problems of Radiation Transfer PDF Author: V. S. Antyufeev
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110920301
Category : Mathematics
Languages : en
Pages : 204

Get Book Here

Book Description
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.

Calculation of Radiation Therapy Dose Using All Particle Monte Carlo Transport

Calculation of Radiation Therapy Dose Using All Particle Monte Carlo Transport PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media.